Citation: Wu Yaxing, Xi Yachao, Zhao Ming, Wang Siyi. Progress in Electrochemical C—H Functionalizations of Aromatic Compounds[J]. Chinese Journal of Organic Chemistry, ;2018, 38(10): 2590-2605. doi: 10.6023/cjoc201804001 shu

Progress in Electrochemical C—H Functionalizations of Aromatic Compounds

  • Corresponding author: Zhao Ming, ming815zhao@163.com
  • Received Date: 1 April 2018
    Revised Date: 13 May 2018
    Available Online: 5 October 2018

    Fund Project: Project supported by the Fundamental Research Funds for the Central Universities (No. 2015XKMS048), the Natural Science Foundation of Jiangsu Province (No. BK20160254), and the National Natural Science Foundation of China (No. U1710102)

Figures(30)

  • Carbon-hydrogen bonds are the most extensive and basic chemical bonds existed in organic compounds. Electrochemical functionalization and direct conversion of aromatic C—H bonds is a green, sustainable, and atomically economical transformation pathway, which avoids the pre-functionalization of reactants. The anodic electrooxidation of aromatics allows the formation of C—X (X=C, N, O, S) bonds and the preparation of fused aromatic rings without the use of oxidants. Certain C—H activation reactions with chemoselectivity and regioselectivity can also be achieved by the optimization of electrode materials, electrolytes, and solvents. Vourious reactions focusing on the electrochemical functionalizations of C—H bonds in aromatic compounds are mainly reviewed.
  • 加载中
    1. [1]

      Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.  doi: 10.1021/acs.chemrev.7b00397

    2. [2]

      Horn, E. J.; Rosen, B. R.; Baran, P. S. ACS Cent. Sci. 2016, 2, 302.  doi: 10.1021/acscentsci.6b00091

    3. [3]

      Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485.  doi: 10.1021/acs.chemrev.7b00271

    4. [4]

      Li, Z.; Li, C. J.; Herrerías, C. I.; Yao, X. Chem. Rev. 2007, 107, 6.

    5. [5]

      Bergman, R. G. Nature 2007, 466, 391.

    6. [6]

      Sun, C. L.; Li, B. J.; Shi, Z. J. Chem. Rev. 2011, 111, 1293.  doi: 10.1021/cr100198w

    7. [7]

      Liao, K.; Pickel, T. C.; Boyarskikh, V.; Bacsa, J.; Musaev, D. G.; Davies, H. Nature 2016, 47, 230.

    8. [8]

      Evan, J. H.; Brandon, R. R.; Yong, C.; Tang, J. Z.; Ke, C.; Eastgate, M. D.; Baran, P. S. Nature 2016, 533, 77.  doi: 10.1038/nature17431

    9. [9]

      Liu, W.; Zheng, X. Y.; Zeng, J. G.; Cheng, P. Chin. J. Org. Chem. 2017, 37, 1(in Chinese).
       

    10. [10]

      Liu, Y. R.; Hu, B. L.; Zhang, X. G. Chin. J. Chem. 2017, 35, 307  doi: 10.1002/cjoc.v35.3

    11. [11]

      Pei, P. K.; Zhang, F.; Yi, H.; Lei, A. W. Acta Chimi. Sinica 2017, 75, 15(in Chinese).  doi: 10.3969/j.issn.0253-2409.2017.01.003

    12. [12]

      Li, T. T.; Jin, P. Y.; Lin, S.; Zhi, Y. G.; Liu, X. Y. Chin. J. Chem. 2016, 34, 490.  doi: 10.1002/cjoc.201500891

    13. [13]

      Schopohl, M. C.; Faust, A.; Mirk, D.; Fr hlich, R.; Kataeva, O. Eur. J. Org. Chem. 2010, 2987.

    14. [14]

      Waldvogel, S. R.; Mirk, D. Tetrahedron Lett. 2000, 31, 4769.

    15. [15]

      Malkowsky, I. M.; Griesbach, U.; Pütter, H.; Waldvogel, S. R. Eur. J. Org. Chem. 2006, 4569.

    16. [16]

      Kirste, A.; Martin, N.; Malkowsky, I. M.; Florian, S.; Andreas, F.; Waldvogel, S. R. Chem. Eur. J. 2009, 15, 2273  doi: 10.1002/chem.v15:10

    17. [17]

      Kirste, A.; Gregor, S.; Waldvogel, S. R. Org. Lett. 2011, 13, 3126.  doi: 10.1021/ol201030g

    18. [18]

      Kirste, A.; Shotaro, H.; Gregor, S.; Malkowsky, I. M.; Florian, S.; Andreas, F.; Toshio, F.; Waldvogel, S. R. Chem.-Eur. J. 2011, 17, 14164.  doi: 10.1002/chem.v17.50

    19. [19]

      Kirste, A.; Gregor, S.; Florian, S.; Andreas, F.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2010, 49, 971.  doi: 10.1002/anie.200904763

    20. [20]

      Kirste, A.; Elsler, B.; Schnakenburg, G.; Waldvogel, S. R. J. Am. Chem. Soc. 2012, 43, 3571.

    21. [21]

      Bernd, E.; Anton, W.; Dieter, S.; Dyballa, K. M.; Franke, R.; Waldvogel, S. R. Chem.-Eur. J. 2015, 21, 12321.  doi: 10.1002/chem.201501604

    22. [22]

      Sebastian, L.; Anton, W.; Bernd, E.; Dieter, S.; Dyballa, K. M.; Franke, R.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2016, 55, 10872.  doi: 10.1002/anie.201605865

    23. [23]

      Bernd, E.; Dieter, S.; Marie, D. K.; Franke, R.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2014, 53, 5210.

    24. [24]

      Anton, W.; Dieter, S.; Dyballa, K. M.; Franke, R.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2016, 55, 11180.

    25. [25]

      Amatore, C.; Cammoun, C.; Jutand, A. Adv. Synth. Catal. 2007, 349, 292.  doi: 10.1002/(ISSN)1615-4169

    26. [26]

      Saito, F.; Aiso, H.; Kochi, T.; Kakiuchi, F. Organometallics 2014, 33, 6704.  doi: 10.1021/om500957a

    27. [27]

      Ma, C.; Zhao, C. Q.; Li, Y. Q.; Zhang, L. P.; Xu, X. T.; Zhang, K.; Mei, T. S. Chem. Commun. 2017, 53, 12189.  doi: 10.1039/C7CC07429H

    28. [28]

      Jensen, K. L.; Franke, P. T.; Nielsen, L. T.; Daasbjerg, K.; Joergensen, K. A. Angew. Chem., Int. Ed. 2010, 122, 133.  doi: 10.1002/ange.200904754

    29. [29]

      Ho, X. H.; Mho, S. I.; Kang, H.; Jang, H. Y. Eur. J. Org. Chem. 2010, 4436.

    30. [30]

      Fu, N.; Li, L.; Yang, Q.; Luo, S. Z. Org. Lett. 2017, 19, 2122.  doi: 10.1021/acs.orglett.7b00746

    31. [31]

      Li, L. J.; Jiang, Y. Y.; Lam, C. M.; Zeng, C. C.; Hu, L. M.; Little, R. D. J. Org. Chem. 2015, 80, 11021.  doi: 10.1021/acs.joc.5b02222

    32. [32]

      Lara, S.; Enders, M.; Bernd, E.; Dieter, S.; Dyballa, K. M.; Franke, R.; Waldvogel, S. R. Angew. Chem. Int. Ed. 2017, 56, 4877.  doi: 10.1002/anie.201612613

    33. [33]

      R se, P.; Emge, S.; K nig, C. A.; Hilt, G. Adv. Synth. Catal. 2017, 359, 1359.  doi: 10.1002/adsc.v359.8

    34. [34]

      Morofuji, T.; Shimizu, A.; Yoshida, J. Angew. Chem., Int. Ed. 2012, 51, 7259.  doi: 10.1002/anie.201202788

    35. [35]

      Arai, T.; Hiroyuki, T.; Nakabayashi, K.; Kashiwagi, T.; Mahito, A. Chem. Commun. 2015, 51, 4891.  doi: 10.1039/C5CC01253H

    36. [36]

      Gallardo, I.; Gonzalo, G.. Eur. J. Org. Chem. 2008, 2463.

    37. [37]

      Moutiers, G.; Pinson, J.; Terrier, F.; Goumont, R. Chem.-Eur. J. 2001, 7, 1712.  doi: 10.1002/(ISSN)1521-3765

    38. [38]

      Charushin, V. N. ; Chupakhin, O. N. In Topics in Heterocyxlic Chemistry, Ed. : Selig, P., Springer International Publishing, Cham. 2013, Vol. 37, pp. 1~50.

    39. [39]

      Gallardo, I.; Guirado, G.; Marquet, J. Chem.-Eur. J. 2001, 7, 1759.  doi: 10.1002/(ISSN)1521-3765

    40. [40]

      Gallardo, I.; Gonzalo, G.; Marquet, J. J. Org. Chem. 2002, 67, 2548.  doi: 10.1021/jo010847t

    41. [41]

      Gallardo, I.; Gonzalo, G.; Marquet, J. J. Org. Chem. 2003, 68, 631.  doi: 10.1021/jo025898k

    42. [42]

      Gallardo, I.; Gonzalo, G.; Marquet, J. J. Org. Chem. 2003, 68, 7334.  doi: 10.1021/jo030158c

    43. [43]

      Gallardo, I.; Guirado, G.; Marquet, J. Eur. J. Org. Chem. 2002, 261.

    44. [44]

      Wang, Q. Q.; Xu, K.; Jiang, Y. Y.; Liu, Y. G.; Sun, B. G.; Zeng, C. C. Org. Lett. 2017, 19, 5517.  doi: 10.1021/acs.orglett.7b02589

    45. [45]

      Morofuji, T.; Shimizu, A.; Yoshida, J. J. Am. Chem. Soc. 2013, 135, 5000.  doi: 10.1021/ja402083e

    46. [46]

      M hle, S.; Herold, S.; Richter, F.; Nefzger, H.; Waldvogel, S. R. ChemElectroChem 2017, 4, 2196.  doi: 10.1002/celc.201700476

    47. [47]

      Herold, S.; M hle, S.; Zirbes, M.; Richter, F.; Nefzger, H.; Waldvogel, S. R. Eur. J. Org. Chem. 2016, 1274.

    48. [48]

      Morofuji, T.; Shimizu, A.; Yoshida, J. J. Am. Chem. Soc. 2014, 136, 4496.  doi: 10.1021/ja501093m

    49. [49]

      Morofuji, T.; Shimizu, A.; Yoshida, J. J. Am. Chem. Soc. 2015, 137, 9816.  doi: 10.1021/jacs.5b06526

    50. [50]

      Watts, K.; Gattrell, W.; Beilstein, T. J. Org. Chem, 2011, 7, 1108.

    51. [51]

      Nishiyama, S.; Amano, Y. Tetrahedron Lett. 2006, 37, 6505.

    52. [52]

      Broese, T.; Francke, R. Org. Lett. 2016, 18, 5896.  doi: 10.1021/acs.orglett.6b02979

    53. [53]

      Gao, W. J.; Li, W. C.; Zeng, C. C.; Tian, H. Y.; Hu, L. M.; Little, R. D. J. Org. Chem. 2014, 79, 9613.  doi: 10.1021/jo501736w

    54. [54]

      Liang, S.; Zeng, C. C.; Tian, H. Y.; Sun, B. G.; Luo X. G.; Ren F. Z. J. Org. Chem. 2016, 2016, 11157.

    55. [55]

      Gao, X. L.; Wang, P.; Zeng, L.; Tang, S.; Lei, A. W. J. Am. Chem. Soc. 2018, 140, 4195  doi: 10.1021/jacs.7b13049

    56. [56]

      Gallardo, I.; Guirado, G.; Marquet, J. Eur. J. Org. Chem. 2002, 2002, 251.  doi: 10.1002/1099-0690(20021)2002:2<251::AID-EJOC251>3.0.CO;2-A

    57. [57]

      Hussey, C. L.; Achord, J. M. Annal. Dogmatic Theology 1981, 128, 2556.

    58. [58]

      Cortona, M. N.; Vettorazzi, N. R.; Silber, J. J.; Sereno, L. E. J. Electroanal. Chem. 1999, 470, 157.  doi: 10.1016/S0022-0728(99)00232-6

    59. [59]

      Nematollahi, D.; Ariapad, A.; Rafiee, M. J. Electrochem. Soc. 2007, 602, 37.

    60. [60]

      Salahifar, E.; Nematollahi, D.; Bayat, M.; Mahyari, A.; Rudbari, H. A. Org. Lett. 2015, 17, 4666.  doi: 10.1021/acs.orglett.5b01837

    61. [61]

      Tajima, T.; Kishi, Y.; Atsushi, N. Electrochim. Acta 2009, 54, 5959.  doi: 10.1016/j.electacta.2009.05.067

    62. [62]

      Dudkina, Y. B.; Mikhaylov, D. Y.; Gryaznova, T. V.; Tufatullin, A. I.; Kataeva, O. N.; David, A. V.; Budnikova, Y. H. Organometallics 2013, 32, 4785.  doi: 10.1021/om400492g

    63. [63]

      Dudkina, Y. B.; Gryaznova, T. V.; Sinyashin, O. G.; Budnikova, Y. H. Russ. Chem. Bull. 2015, 64, 1713.  doi: 10.1007/s11172-015-1067-3

    64. [64]

      Li, Yi. Q.; Yang, Q. L.; Fang, P.; Mei, T. S.; Zhang, D. Y. Org. Lett. 2017, 19, 2905.  doi: 10.1021/acs.orglett.7b01138

    65. [65]

      Shrestha, A.; Lee, M.; Dunn, A. L.; Sanford, M. S. Org. Lett. 2018, 20, 204.  doi: 10.1021/acs.orglett.7b03559

    66. [66]

      Sauermann, N.; Meyer, T. H.; Tian, C.; Ackermann, L. J. Am. Chem. Soc. 2017, 139, 18452.  doi: 10.1021/jacs.7b11025

    67. [67]

      Nishiyama, S.; Yamamura, S. Synlett 2002, 533.

    68. [68]

      Kazuki, M.; Takahashi, M.; Yamamura, S.; Nishiyama, S. Tetra-hedron 2001, 57. 5527.  doi: 10.1016/S0040-4020(01)00478-1

    69. [69]

      Kawabata, Y.; Naito, Y.; Saitoh, T.; Kawa, K.; Fuchigami, T.; Nishiyama, S. Eur. J. Org. Chem. 2013, 99.

    70. [70]

      Naito, Y.; Tanabe, T.; Yuki, K.; Ishikawa, Y.; Nishiyama, S. Tetrahedron Lett. 2010, 51, 4776.  doi: 10.1016/j.tetlet.2010.07.037

    71. [71]

      Tanabe, T.; Doi, F.; Ogamino, T.; Nishiyama, S. Tetrahedron Lett. 2004, 45, 3477.  doi: 10.1016/j.tetlet.2004.02.154

    72. [72]

      Barjau, J.; Schnakenburg, G.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2011, 50, 1415.  doi: 10.1002/anie.v50.6

    73. [73]

      Michael, M.; Lars, A.; Caroline, S.; Joaquin, B.; Dieter, S.; Till, O.; Arne, L.; Siegfried, R. W. Eur. J. Org. Chem. 2015, 4876.

    74. [74]

      Barjau, J.; Schnakenburg, G.; Waldvogel, S. R. Synthesis 2011, 2054.

    75. [75]

      Barjau, J.; K nigs, P.; Kataeva, O.; Waldvogel, S. R. Synlett 2008, 2309.

    76. [76]

      Nematollahi, D.; Tammari, E. J. Org. Chem. 2005, 70, 7769.  doi: 10.1021/jo0508301

    77. [77]

      Zeng, C. C.; Liu, F. J.; Ping. D. W.; Cai, Y. L.; Zhong, R. G.; Becker, J. Y. J. Electroanal. Chem. 2009, 625, 131.  doi: 10.1016/j.jelechem.2008.10.019

    78. [78]

      Zeng, C. C.; Liu, F. J.; Ping, D. W.; Hu, L. M.; Cai, Y. L.; Zhong, R. G.. Tetrahedron 2009, 65, 4505.  doi: 10.1016/j.tet.2009.03.101

    79. [79]

      Zeng, C. C.; Ping, D. W.; Zhang, S. C.; Zhong, R. G.; Becker, J. Y. J. Electroanal. Chem. 2008, 622, 90.  doi: 10.1016/j.jelechem.2008.05.009

    80. [80]

      Khodaei, M. M.; Alizadeh, A.; Pakravan, N. J. Org. Chem. 2008, 73, 2527.  doi: 10.1021/jo702327m

    81. [81]

      Fotouhi, L.; Asadi, S.; Tammari, E.; Heravi, M. M.; Nematollahi, D. Anal. Bioanal. Electrochem. 2009, 1, 216.

    82. [82]

      Amani, A.; Nematollahi, D. J. Org. Chem. 2012, 77, 11130.

    83. [83]

      Wang, P.; Tang, S.; Huang, P. F.; Lei, A. W. Angew. Chem., Int. Ed. 2017, 56, 3009.  doi: 10.1002/anie.201700012

    84. [84]

      Nematollahi, D. N.; Ramazanali, R.; Maryam, M. Synth. Commun. 2003, 34, 2269.

    85. [85]

      Nematollahi, D.; Beiginejad, H.; Varmaghani, F.; Bayat, M.; Salehzadeh, H. J. Electrochem. Soc. 2013, 160, 142.

    86. [86]

      Zeng, C. C.; Liu, C. F.; Zeng, J.; Zhong, R. G.. J. Electroanal. Chem. 2007, 608, 85.  doi: 10.1016/j.jelechem.2007.02.005

    87. [87]

      Xiao, H. L.; Yang, C. W.; Zhang, N. T.; Zeng, C. C.; Hu, L. M.; Tian, H. Y.; Little, R. D. Tetrahedron 2013, 69, 658.  doi: 10.1016/j.tet.2012.11.005

    88. [88]

      Feng, M. L.; Xi, L. Y.; Chen, S. Y.; Yu, X. Q. Eur. J. Org. Chem. 2017, 2017, 2746.  doi: 10.1002/ejoc.201700269

    89. [89]

      Hou, Z. W.; Mao, Z. Y.; Zhao, H. B.; Melcamu, Y. Y.; Lu, X.; Song, J.; Xu, H. C. Angew. Chem., Int. Ed. 2016, 55, 9168.  doi: 10.1002/anie.201602616

    90. [90]

      Hou, Z. W.; Mao, Z. Y.; Song, J.; Xu, H. C. ACS Catal. 2017, 7, 5810.  doi: 10.1021/acscatal.7b02105

    91. [91]

      Wu, Z. J.; Xu, H. C. Angew. Chem., Int. Ed. 2017, 56, 4631.  doi: 10.1002/anie.201702378

    92. [92]

      Xiong, P.; Xu, H.; Song, J. S.; Xu, H. C. J. Am. Chem. Soc. 2018, 140, 2460.  doi: 10.1021/jacs.8b00391

    93. [93]

      Tang, S.; Gao, X. L.; Lei, A. W. Chem. Commun. 2017, 53, 3354.  doi: 10.1039/C7CC00410A

    94. [94]

      Wen, J. W.; Shi, W. Y.; Zhang, F.; Liu, D.; Tang, S.; Wang, H. M.; Lin, X. M.; Lei, A. W. Org. Lett. 2017, 19, 3131.  doi: 10.1021/acs.orglett.7b01256

    95. [95]

      Zhao, H. B.; Hou, Z. W.; Liu, Z. J.; Zhou, Z. F.; Song, J. S.; Xu, H. C. Angew. Chem. Int. Ed. 2017, 56, 587.  doi: 10.1002/anie.201610715

    96. [96]

      Zhao, H. B.; Liu, Z. J.; Song, J.; Xu, H. C. Angew. Chem., Int. Ed. 2017, 56, 12732.  doi: 10.1002/anie.201707192

    97. [97]

      Inoue, K.; Ishikawa, Y.; Nishiyama, S. Org. Lett. 2010, 12. 436.

    98. [98]

      Kajiyama, D.; Inoue, K.; Ishikawa, Y.; Nishiyama, S. Tetrahedron 2010, 66, 9779.  doi: 10.1016/j.tet.2010.11.015

    99. [99]

      Amano, Y.; Inoue, K.; Nishiyama, S. Synlett. 2008, 134.

    100. [100]

      Morofuji, T.; Shimizu, A.; Yoshida, J. Chem.-Eur. J. 2015, 21, 3211.  doi: 10.1002/chem.201406398

    101. [101]

      Wesenberg, L. J.; Herold, S.; Shimizu, A.; Yoshida, J.; Waldvogel, S. R. Chem.-Eur. J. 2017, 23, 12096.  doi: 10.1002/chem.201701979

    102. [102]

      Xu, F.; Qian, X. Yang.; Li, Y. J.; Xu, H. C. Org. Lett. 2017, 19, 6332.  doi: 10.1021/acs.orglett.7b03152

    103. [103]

      Tile, G.; Anton, K.; Dieter, S.; Moeller, K. D.; Waldvogel, S. R. Chem. Commun. 2017, 53, 2974.  doi: 10.1039/C7CC00927E

    104. [104]

      Tile, G.; Anton, K.; Dieter, S.; Moeller, K. D.; Waldvogel, S. R. J. Am. Chem. Soc. 2017, 139, 12317  doi: 10.1021/jacs.7b07488

    105. [105]

      Zhang, S.; Li, L. J.; Wang, H. Q.; Li, Q.; Liu, W. M.; Xu. K, Zeng, C. C. Org. Lett. 2018, 20, 252.  doi: 10.1021/acs.orglett.7b03617

    106. [106]

      Qian, X. Y.; Li, S. Q.; Song, J. S.; Xu, H. C. ACS Catal. 2017, 7, 2730.  doi: 10.1021/acscatal.7b00426

    107. [107]

      Wang, P.; Tang, S.; Lei, A. W. Green Chem. 2017, 19, 2092.  doi: 10.1039/C7GC00468K

    108. [108]

      Folgueiras-Amador, A. A.; Qian, X. Y.; Xu, H. C.; Wirth, T. Chem.-Eur. J. 2018, 24, 487.  doi: 10.1002/chem.v24.2

    109. [109]

      Chiba, K.; Fukuda, M.; Kim, S.; Kitano, Y.; Tada, M. J. Org. Chem. 2000, 31, 7654.

    110. [110]

      Elseedi, H. R.; Yamamura, S.; Nishiyama, S. Tetrahedron 2002, 58, 7485.  doi: 10.1016/S0040-4020(02)00829-3

    111. [111]

      Kim, S.; Noda, S.; Hayashi, K.; Chiba, K. Org. Lett. 2008, 10, 1827.  doi: 10.1021/ol8004408

    112. [112]

      Kim, S.; Hirose, K.; Uematsu, J.; Mikami, Y.; Chiba, K. Chem.-Eur. J. 2012, 18, 6284.  doi: 10.1002/chem.201103630

    113. [113]

      Liu, K.; Tang, S.; Huang, P. F.; Lei, A. W. Nat. Commun. 2017, 8, 775.  doi: 10.1038/s41467-017-00873-1

    114. [114]

      Tian, C.; Massignan, L.; Meyer, Tjark. H.; Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 2383.  doi: 10.1002/anie.201712647

    115. [115]

      Xu, F.; Li, Y. Jie.; Huang, C.; Xu, H. C. ACS Catal. 2018, 8, 3820..  doi: 10.1021/acscatal.8b00373

    116. [116]

      Nematollahi, D.; Habibi, D.; Rahmati, M.; Rafiee, M. J. Org. Chem. 2004, 69, 2637.  doi: 10.1021/jo035304t

    117. [117]

      Hosseiny Davarani, S. S.; Nematollahi, D.; Shamsipur, M.; Najafi, N. M.; Masoumi, L.; Ramyar, S. J. Org. Chem. 2006, 71, 2139.  doi: 10.1021/jo0523767

    118. [118]

      Salehzadeh, H.; Nematollah, D.; Hesari, H. Green Chem. 2014, 45, 2441.

    119. [119]

      Zeng, C. C.; Liu, F. J.; Ping, D. W.; Hu, L. M.; Cai, Y. L.; Zhong, R. G.. J. Org. Chem. 2010, 41, 6386.

    120. [120]

      Bai, Y. X.; Ping, D. W.; Little, R. D.; Tian, H. Y.; Hu, L. M.; Zeng, C. C. Tetrahedron 2011, 67, 9334.  doi: 10.1016/j.tet.2011.09.126

  • 加载中
    1. [1]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    2. [2]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    3. [3]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    4. [4]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    5. [5]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    6. [6]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    7. [7]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    8. [8]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    9. [9]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    10. [10]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    11. [11]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    12. [12]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    13. [13]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    14. [14]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    15. [15]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    16. [16]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    17. [17]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    18. [18]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    19. [19]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    20. [20]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

Metrics
  • PDF Downloads(66)
  • Abstract views(4473)
  • HTML views(1262)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return