Poly (amido amine)s with Different Branched Architecture: Synthesis, Reactivity and Their Application in Gene Delivery
- Corresponding author: Deng Wei, wdeng@shu.edu.cn
	            Citation:
	            
		            Zhang Wei, Yao Zijian, Deng Wei. Poly (amido amine)s with Different Branched Architecture: Synthesis, Reactivity and Their Application in Gene Delivery[J]. Chinese Journal of Organic Chemistry,
							;2018, 38(10): 2713-2719.
						
							doi:
								10.6023/cjoc201803006
						
					
				
					 
				
	        
 
	                
				Ranucci, E.; Suardi, M. A.; Annunziata, R.; Ferruti, P.; Chiellini, F.; Bartoli, C. Biomacromolecules 2008, 9, 2693.
												 doi: 10.1021/bm800655s
											
										
				Wang, X.; He, Y.-J.; Wu, J.-Y.; Gao, C.; Xu, Y.-H. Biomacromolecules 2010, 11, 245.
												 doi: 10.1021/bm901091z
											
										
				Jones, C. H.; Chen, C.-K.; Jiang, M.; Fang, L.; Cheng, C.; Pfeifer, B. A. Mol. Pharmaceutics 2013, 10, 1138.
												 doi: 10.1021/mp300666s
											
										
				Jones, C. H.; Chen, C.-K.; Ravikrishnan, A.; Rane, S.; Pfeifer, B. A. Mol. Pharmaceutics 2013, 10, 4082.
												 doi: 10.1021/mp400467x
											
										
				Zhang, X.-Q.; Chen, M.; Lam, R.; Xu, X.-Y.; Osawa, E.; Ho, D. ACS Nano 2010, 3, 2609.
										
				Kievit, F. M.; Veiseh, O.; Fang, C.; Bhattarai, N.; Lee, D.; Ellenbogen, R. G.; Zhang, M. Q. ACS Nano 2010, 4, 4587.
												 doi: 10.1021/nn1008512
											
										
				Cai, X.; Jin, R.; Wang, J.; Yue, D.; Jiang, Q.; Wu, Y.; Gu, Z. ACS Appl. Mater. Interfaces 2016, 11, 5821.
										
				Kong, L.; Alves, C. S.; Hou, W.; Qiu, J.; Mohwald, H.; Tomas, H.; Shi, X. ACS Appl. Mater. Interfaces 2015, 7, 4833.
												 doi: 10.1021/am508760w
											
										
				Li, T.; Wu, L.; Zhang, J.; Xi, G.; Pang, Y.; Wang, X.; Chen, T. ACS Appl. Mater. Interfaces 2016, 8, 31311.
												 doi: 10.1021/acsami.6b09915
											
										
				Lim, D. G.; Rajasekaran, N.; Lee, D.; Kim, N. A.; Jung, H. S.; Hong, S.; Shin, Y. K.; Kang, E.; Jeong, S. H. ACS Appl. Mater. Interfaces 2017, 9, 31543.
												 doi: 10.1021/acsami.7b09624
											
										
				Liu, J.; Xu, L.; Jin, Y.; Qi, C.; Li, Q.; Zhang, Y.; Jiang, X.; Wang, G.; Wang, Z.; Wang, L. ACS Appl. Mater. Interfaces 2016, 8, 14200.
												 doi: 10.1021/acsami.6b04462
											
										
				Zhang, C.; Zhang, T.; Jin, S.; Xue, X.; Yang, X.; Gong, N.; Zhang, J.; Wang, P.-C.; Tian, J.-H.; Xing, J.; Liang, X.-J. ACS Appl. Mater. Interfaces 2017, 9, 4425.
												 doi: 10.1021/acsami.6b11536
											
										
				Guan, X.; Guo, Z.; Lin, L.; Chen, J.; Tian, H.; Chen, X. Nano Lett. 2016, 16, 6823.
												 doi: 10.1021/acs.nanolett.6b02536
											
										
				Tsai, Y. J.; Hu, C.-C.; Chu, C.-C.; Toyoko, I. Biomacromolecules 2011, 12, 4283.
												 doi: 10.1021/bm201196p
											
										
				Grayson, S. M.; Frechet, J. M. J. Chem. Rev. 2001, 101, 3819.
												 doi: 10.1021/cr990116h
											
										
				Cheng, C.-X.; Jiao, T.-F.; Tang, R.-P.; Chen, E.-Q.; Liu, M.-H.; Xi, F. Macromolecules 2006, 29, 6327.
										
				Percec, V.; Dulcey, A. E.; Peterca, M.; Ilies, M.; Sienkowska, M. J.; Heiney, P. A. J. Am. Chem. Soc. 2005, 127, 17902.
												 doi: 10.1021/ja056313h
											
										
				Jin, H.-B.; Zheng, Y.-L.; Liu, Y.; Cheng, H.-X.; Zhou Y.-F.; Yan, D.-Y. Angew. Chem., Int. Ed. 2011, 50, 10352.
												 doi: 10.1002/anie.201103164
											
										
				Al-Jamal, K. T.; Al-Jamal, W. T.; Wang, T. W. J.; Rubio, N.; Buddle, J.; Gathercole, D.; Zloh, M.; Kostarelos, K. ACS Nano 2013, 7, 1905.
												 doi: 10.1021/nn305860k
											
										
				Ping, Y.; Wu, D.-C.; Kumar, J. N.; Cheng, W.-R.; Lay, C. L.; Liu, Y. Biomacromolecules 2013, 14, 2083.
												 doi: 10.1021/bm400460r
											
										
				Huang, H.; Cao, D.-W.; Qin, L.-H.; Tian, S.-Q.; Liang, Y.; Pan S.-R.; Feng, M. Mol. Pharmaceutics 2014, 11, 2323.
												 doi: 10.1021/mp5002608
											
										
				Dohnal, V.; Maly, J.; Havlickova, M.; Semeradtova, A.; Herman, D.; Kuca, K. J. Chromatogr. Sci. 2014, 52, 321.
												 doi: 10.1093/chromsci/bmt032
											
										
				Hasanzadeh, M.; Shadjou, N.; Eskandani, M.; Soleymani, J.; Jafari, F.; DelaGuardia, M. TrAC-Trends Anal. Chem. 2014, 53, 137.
												 doi: 10.1016/j.trac.2013.09.015
											
										
				Yang, J.-P.; Zhang, Q.; Chang, H.; Cheng, Y.-Y. Chem. Rev. 2015, 115, 5274.
												 doi: 10.1021/cr500542t
											
										
				Bhattacharya, P.; Nasybulin, E. N.; Engelhard, M. H.; Kovarik, L.; Bowden, M. E.; Li, X.-S.; Gaspar, D. J.; Xu, W.; Zhang, J.-G. Adv. Funct. Mater. 2014, 24, 7510.
												 doi: 10.1002/adfm.v24.47
											
										
				Li, H. M.; Sun, X.; Zhao, D.; Zhang, Z.-R. Mol. Pharmaceutics 2012, 9, 2974.
												 doi: 10.1021/mp300321n
											
										
				Tabassi, A. S. S.; Tekie, F. S. M.; Hadizadeh, F.; Rashid, R.; Khodaverdi, E.; Mohajeri, S. A. J. Sol.-Gel. Sci. Technol. 2014, 69, 166.
												 doi: 10.1007/s10971-013-3200-9
											
										
				Shah, S.; Solanki, A.; Sasmal, P. K.; Lee, K. B. J. Am. Chem. Soc. 2013, 135, 15682.
												 doi: 10.1021/ja4071738
											
										
				Su, C.-J.; Chen, H.-L.; Wei, M.-C.; Peng, S.-F.; Sung, H.-W.; Ivanov, V. A. Biomacromolecules 2009, 10, 773.
												 doi: 10.1021/bm801246e
											
										
				Zhou, Z.-X.; Ma, X.-P.; Jin, E.; Tang, J.-B.; Sui, M.-H.; Shen, Y.-Q.; Van Kirk, E. A.; Murdoch, W. J.; Radosz, M. Biomaterials 2013, 34, 5722.
												 doi: 10.1016/j.biomaterials.2013.04.012
											
										
				Bekhradnia, S.; Zhu, K.; Knudsen, K. D.; Sande, S. A.; Nystr m, B. J. Mater. Sci. 2014, 49, 6102.
												 doi: 10.1007/s10853-014-8340-y
											
										
				Higa, O. Z.; Faria, H. A. M.; De Queiroz, A. A. A. Radiat. Phys. Chem. 2014, 98, 118.
												 doi: 10.1016/j.radphyschem.2014.01.017
											
										
				Pan, J.-J.; Yuan, Y.-Q.; Wang, H.-W.; Liu, F.; Xiong, X.-H.; Chen, H.; Yuan, L. ACS Appl. Mater. Interfaces 2016, 8, 15138.
												 doi: 10.1021/acsami.6b04689
											
										
				Coue, G.; Freese, C.; Unger, R. E.; Kirkpatrick, C. J.; Engbersen, J. F. J. Acta Biomater. 2013, 9, 6062.
												 doi: 10.1016/j.actbio.2012.12.005
											
										
				Martello, F.; Piest, M.; Engbersen, J. F. J.; Ferruti, P. J. Controlled Release 2012, 164, 372.
												 doi: 10.1016/j.jconrel.2012.07.029
											
										
				Wang, R.-B.; Zhou, L.-Z.; Zhou, Y.-F.; Li, G.-L.; Zhu, X.-Y.; Gu, H.-C.; Jiang, X.-L.; Li, H.-Q.; Wu, J.-L.; He, L.; Guo, X.-Q.; Zhu, B.-S.; Yan, D.-Y. Biomacromolecules 2010, 11, 489.
												 doi: 10.1021/bm901215s
											
										
				Liu, J.-Y.; Huang, W.; Pan, Y.; Huang, P.; Zhu, X.-Y.; Zhou, Y.-F.; Yan, D.-Y. Angew. Chem., Int. Ed. 2011, 50, 9162.
												 doi: 10.1002/anie.201102280
											
										
				Liu, Y.; Yu, C.-Y.; Jin, H.-B.; Jiang, B.-B.; Zhu, X.-Y.; Zhou, Y. -F.; Lu Z.-Y.; Yan, D.-Y. J. Am. Chem. Soc. 2013, 135, 4765.
												 doi: 10.1021/ja3122608
											
										
				Tao, W.; Liu, Y.; Jiang, B.-B.; Yu, S.-R.; Huang, W.; Zhou, Y.-F.; Yan, D.-Y. J. Am. Chem. Soc. 2012, 134, 762.
												 doi: 10.1021/ja207924w
											
										
				Santhakumaran, L. M.; Thomas, T.; Thomas, T. J. Nucleic Acids Res. 2004, 32, 2102.
												 doi: 10.1093/nar/gkh526
											
										
				Sylvestre, J. P.; Kabashin, A. V.; Sacher, E.; Meunier, M.; Luong, J. H. T. J. Am. Chem. Soc. 2004, 126, 7176.
												 doi: 10.1021/ja048678s
											
										
				Chen, L.; Zhu, X.-Y.; Yan, D.-Y.; Chen, Y.; Chen, Q.; Yao, Y.-F. Angew. Chem., Int. Ed. 2006, 118, 93.
												 doi: 10.1002/(ISSN)1521-3757
											
										
				Hsieh, S. J.; Wang, C.-C.; Chen, C.-Y. Macromolecules 2009, 42, 4787.
												 doi: 10.1021/ma9002616
											
										
				Zhang, Q.; Wang, N.; Zhao, L.-B.; Xu, T.-W.; Cheng, Y.-Y. ACS Appl. Mater. Interfaces 2013, 5, 1907.
												 doi: 10.1021/am400155b
											
										
				Wang, N.; Dong, A.; Tang, H.; Kirk, E. A. V.; Johnson, P. A.; Murdoch, W. J.; Radosz, M.; Shen, Y. Macromol. Biosci. 2007, 7, 1187.
												 doi: 10.1002/(ISSN)1616-5195
											
										
				Zhou, Y.-F.; Huang, W.-J.; Liu, Y.; Zhu, X.-Y.; Yan, D.-Y. Adv. Mater. 2010, 22, 4567.
												 doi: 10.1002/adma.201000369
											
										
				Wang, D.-L.; Zhao, T.-Y.; Zhu, X.-Y.; Yan, D.-Y.; Wang, W.-X. Chem. Soc. Rev. 2015, 44, 4023.
												 doi: 10.1039/C4CS00229F
											
										
 
						
						
						
	                Zhili Li , Qijun Wo , Dongdong Huang , Dezhong Zhou , Lei Guo , Yeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737
Wenjia Wang , Xingyue He , Xiaojie Wang , Tiantian Zhao , Osamu Muraoka , Genzoh Tanabe , Weijia Xie , Tianjiao Zhou , Lei Xing , Qingri Jin , Hulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656
Qinwei Lu , Jinjie Lu , Juying Lei , Xubiao Luo , Yanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017
Tong Tong , Lezong Chen , Siying Wu , Zhong Cao , Yuanbin Song , Jun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689
Siwei Wang , Wei-Lei Zhou , Yong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261
Linnan Jiang , Zhenkai Qian , Yong Chen , Xiaoyong Yu , Yugui Qiu , Wen-Wen Xu , Yonghui Sun , Xiufang Xu , Lihua Wang , Yu Liu . Double response reversible phosphorescence based on cyclodextrin supramolecular flexible elastic achieved multicolor delayed fluorescence. Chinese Chemical Letters, 2025, 36(8): 110676-. doi: 10.1016/j.cclet.2024.110676
Mengyuan Li , Xitong Ren , Yanmei Gao , Mengyao Mu , Shiping Zhu , Shufang Tian , Minghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699
Chong Liu , Ling Li , Jiahui Gao , Yanwei Li , Nazhen Zhang , Jing Zang , Cong Liu , Zhaopei Guo , Yanhui Li , Huayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118
Liangyu Zhang , Lei Lei , Zhuangzhuang Zhao , Guizhi Yang , Kaitao Wang , Liying Wang , Ningxin Zhang , Yanjia Ai , Xinqing Ma , Guannan Liu , Meng Zhao , Jun Wu , Dongjun Lin , Chun Chen . Enhanced venetoclax delivery using l-phenylalanine nanocarriers in acute myeloid leukemia treatment. Chinese Chemical Letters, 2025, 36(6): 110316-. doi: 10.1016/j.cclet.2024.110316
Chun-Ying Xu , Xiao-Lin Luan , Yuan-Yuan Cui , Cheng-Xiong Yang . One-pot in situ doping synthesis of phenylboronic acid-functionalized magnetic-cyclodextrin microporous organic network for specific enrichment and detection of sulfonylurea herbicides. Chinese Chemical Letters, 2025, 36(9): 110937-. doi: 10.1016/j.cclet.2025.110937
Ziqin Li , Kai Hao , Longwei Xiang , Huayu Tian . Cationic covalent organic framework nanocarriers integrating both efficient gene silencing and real-time gene detection. Chinese Chemical Letters, 2025, 36(4): 109943-. doi: 10.1016/j.cclet.2024.109943
Ling Yang , Min Ren , Jie Wang , Liming He , Shanshan Wu , Shuai Yang , Wei Zhao , Hao Cheng , Xiaoming Zhou , Maling Gou . A non-viral gene therapy for melanoma by staphylococcal enterotoxin A. Chinese Chemical Letters, 2024, 35(5): 108822-. doi: 10.1016/j.cclet.2023.108822
Makhloufi Zoulikha , Zhongjian Chen , Jun Wu , Wei He . Approved delivery strategies for biopharmaceuticals. Chinese Chemical Letters, 2025, 36(2): 110225-. doi: 10.1016/j.cclet.2024.110225
Yan Liu , Yang Wang , Jiayi Zhu , Xuxian Su , Xudong Lin , Liang Xu , Xiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427
Chenshi Lin , Chao Teng , Bingbing Li , Wei He . Anti-inflammatory drug-assisted microRNA gene therapy for effectively improving pulmonary hemodynamics. Chinese Chemical Letters, 2025, 36(7): 110450-. doi: 10.1016/j.cclet.2024.110450
Changgui Tong , Yan Zhao , Sheng Lin , Yong Zhang , Qixian Chen , Yue Wang . Augmenting stealth attributes and intracellular trafficking of polyplex micelles via charge-switching corona for superior gene transduction. Chinese Chemical Letters, 2025, 36(10): 110796-. doi: 10.1016/j.cclet.2024.110796
Linghui Zou , Meng Cheng , Kaili Hu , Jianfang Feng , Liangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129
Fengjie Liu , Fansu Meng , Zhenjiang Yang , Huan Wang , Yuehong Ren , Yu Cai , Xingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335
Fei Yin , Erli Yang , Xue Ge , Qian Sun , Fan Mo , Guoqiu Wu , Yanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753
Xinyu Yu , Fei Wu , Xianglang Sun , Linna Zhu , Baoyu Xia , Zhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821
(a) Linear PAAs1 was synthesized in water; (b~d) low branched PAAs2, PAAs3, PAAs4 were synthesized in mixed solution of water and DMSO; (e) high branched PAAs was obtained in mixed solution of water and DMSO at volume ratio of 1:5; (f) PAAs was modified with excess ammonia
Binding ability of cationic PAAs to DNA, electrophoretic mobility of plasmid DNA in the complexes. For different amino modified PAAs, gel electrophoresis experiments were carried out at the N/P ratios of 0, 1, 2, 5, 10, 15, and 20 from left to right, respectively. First lane (N/P=0) in each test is used as blank experimentation. Agarose gel electrophoresis experimental result of DNA released from the compound with PAAs5-1 (a) and PAAs5-2 (b), respectively
All images were gained with complexes deposited onto fresh mica surface. Each image represents a 2 µm×2 µm scan
The cells were treated with increasing concentrations of PAAs5-2 and PEI for 24 h in serum-free medium before analysis by MTT assay