Citation: Liu Xuemin, Chen Wen, Ni Bangqing, Chen Xinzhi, Qian Chao, Ge Xin. Cu-Catalyzed Aqueous Phase Ullmann-Type C-N Coupling Reaction Promoted by Glycosyl Ligand[J]. Chinese Journal of Organic Chemistry, ;2018, 38(7): 1703-1711. doi: 10.6023/cjoc201801031 shu

Cu-Catalyzed Aqueous Phase Ullmann-Type C-N Coupling Reaction Promoted by Glycosyl Ligand

  • Corresponding author: Ge Xin, gexin@jiangnan.edu.cn
  • Received Date: 23 January 2018
    Revised Date: 5 March 2018
    Available Online: 4 July 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21476194, 21606104), the National Key Research and Development Program of China (No. 2016YFB0301800) and the Opening Foundation from Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology (No. ACEMT-17-03)the National Key Research and Development Program of China 2016YFB0301800the National Natural Science Foundation of China 21606104the Opening Foundation from Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology ACEMT-17-03the National Natural Science Foundation of China 21476194

Figures(2)

  • A green and efficient catalytic system has been developed for the Cu-catalyzed Ullmann-type C-N coupling reactions in water. With CuI as catalyst, N-(2-hydroxyethyl)-β-D-glucopyranosylamine as ligand, aryl iodides and aryl bromides bearing various electron-withdrawing and electron-donating groups could be coupled with N-nucleophiles in water with good yields (61%~96%). The catalytic system was expanded successfully to the reaction of indoles with 4-iodoanisole in water.
  • 加载中
    1. [1]

      (a) Properzi, R. ; Enrico, M. Chem. Soc. Rev. 2014, 43, 779.
      (b) Belfield, A. J. ; Brown, G. R. ; Foubister, A. J. Tetrahedron 1999, 55, 11399.

    2. [2]

      Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054.  doi: 10.1021/cr8002505

    3. [3]

      Ma, D.; Yao, J. C. Tetrahedron:Asymmetry 1996, 7, 3075.  doi: 10.1016/0957-4166(96)00401-6

    4. [4]

      Deng, W.; Liu, L.; Guo, Q. X. Chin. J. Org. Chem. 2004, 24, 150 (in Chinese).

    5. [5]

      (a) Bariwal, J. ; Eycken, E. V. Chem. Soc. Rev. 2013, 42, 9283.
      (b) Sambiagio, C. ; Marsden, S. P. ; Blackera, A. J. ; McGowan, P. C. Chem. Soc. Rev. 2014, 43, 3525.
      (c) Bhunia, S. ; Pawar, G. G. ; Kumar, S. V. ; Jiang, Y. ; Ma, D. Angew. Chem. , Int. Ed. 2017, 56, 16136.

    6. [6]

      (a) Ma, D. ; Cai, Q. ; Zhang, H. Org. Lett. 2003, 5, 2453.
      (b) Zhang, H. ; Cai, Q. ; Ma, D. J. Org. Chem. 2005, 70, 5164.

    7. [7]

      (a) Klapars, A. ; Antilla, J. C. ; Huang, X. H. ; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 7727.
      (b) Antilla, J. C. ; Artis Klapars, A. ; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 11684.

    8. [8]

      Lefevre, G.; Franc, G.; Tlili, A.; Adamo, C.; Taillefer, M.; Ciofini, I.; Jut, A. Organometallics 2012, 31, 7694.  doi: 10.1021/om300636f

    9. [9]

      (a) Sharma, K. K. ; Mandloi, M. ; Rai, N. ; Jain, R. RSC Adv. 2016, 6, 96762.
      (b) Sharma, K. K. ; Sharma, S. ; Kudwal, A. ; Jain, R. Org. Biomol. Chem. 2015, 13, 4637.

    10. [10]

      (a) Goh, S. L. M. ; Hoegerl, M. P. ; Jokic, N. B. ; Tanase, A. D. ; Bechlars, B. ; Baratta, W. ; Mink, J. ; Kuehn, F. E. Eur. J. Inorg. Chem. 2014, 2014, 1225.
      (b) Zhang, Y. ; Feng, M. T. ; Lu, J. M. Org. Biomol. Chem. 2013, 11, 2266.

    11. [11]

      (a) Tang, Y. Q. ; Chu, C. Y. ; Zhu, L. ; Qian, B. ; Shao, L. X. Tetrahedron 2011, 67, 9479.
      (b) Yuan, D. ; Teng, Q. Q. ; Han, V. H. Organometallics 2014, 33, 1794.

    12. [12]

      (a) Tomasek, J. ; Schatz, J. Green Chem. 2013, 15, 2317.
      (b) Vidavsky, Y. ; Anaby, A. ; Lemcoff, N. G. Dalton Trans. 2012, 41, 32.

    13. [13]

    14. [14]

      Jessop, P. G. Green Chem. 2011, 13, 1391.  doi: 10.1039/c0gc00797h

    15. [15]

      (a) Narayan, S. ; Muldoon, J. ; Finn, M. G. ; Fokin, V. V. ; Kolb, H. C. ; Sharpless, K. B. Angew. Chem. , Int. Ed. 2005, 44, 3275.
      (b) Butler, R. N. ; Coyne, A. G. Chem. Rev. 2010, 110, 6302.

    16. [16]

      Lindström, U. M. Chem. Rev. 2002, 102, 2751.  doi: 10.1021/cr010122p

    17. [17]

      (a) Mukhopadhyay, C. ; Tapaswi, P. K. ; Butcher, R. J. Org. Biomol. Chem. 2010, 8, 4720.
      (b) Yong, F. F. ; Teo, Y. C. ; Tay, S. H. ; Tan, Y. H. ; Lim, K. H. Tetrahedron Lett. 2011, 52, 1161.

    18. [18]

      (a) Bollenbach, M. ; Wagner, P. ; Aquino, P. G. V. ; Bourguignon, J. J. ; Bihel, F. ; Salomé, C. ; Schmitt, M. ChemSusChem 2016, 9, 3244.
      (b) Sorella, G. L. ; Strukul, G. ; Scarso, A. Green Chem. 2015, 17, 644.
      (c)Mandal, S. ; Mandal, S. ; Ghosh, S. K. ; Sar, P. ; Ghosh, A. ; Saha, R. ; Saha, B. RSC Adv. 2016, 6, 69605.

    19. [19]

    20. [20]

      (a) Gholap, A. R. ; Venkatesan, K. ; Pasricha, R. ; Daniel, T. ; Lahoti, R. J. ; Srinivasan, K. V. J. Org. Chem. 2005, 70, 4869.
      (b) Mandhane, P. G. ; Joshi, R. S. ; Nagargoje, D. R. ; Gill, C. H. Tetrahedron Lett. 2010, 51, 3138.

    21. [21]

    22. [22]

      (a) Ge, X. ; Qian, C. ; Chen, Y. B. ; Chen, X. Z. Tetrahedron: Asymmetry 2014, 25, 596.
      (b) Ge, X. ; Qian, C. ; Chen, X. Z. Tetrahedron: Asymmetry 2014, 25, 1450.

    23. [23]

      (a) Ge, X. ; Chen, X. Z; Qian, C. ; Zhou, S. D. RSC Adv. 2016, 6, 58898.
      (b) Ge, X. ; Chen, X. Z; Qian, C. ; Zhou, S. D. RSC Adv. 2016, 6, 29638.

    24. [24]

      (a) Thakur, K. G. ; Ganapathy, D. ; Sekar, G. Chem. Commun. 2011, 47, 5076.
      (b) Wen, M. ; Shen, C. ; Wang, L. F. ; Zhang, P. F. ; Jin, J. Z. RSC Adv. 2015, 5, 1522.

    25. [25]

      Li, Z. K.; Wu, Z. Q.; Deng, H.; Zhou, X. G. Chin. J. Org. Chem. 2013, 33, 760 (in Chinese).
       

    26. [26]

      Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 6954.  doi: 10.1002/anie.v48:38

    27. [27]

      Wen, M.; Shen, C.; Wang, L. F.; Zhang, P. F.; Jin, J. Z. RSC Adv. 2015, 5, 1522.  doi: 10.1039/C4RA11183D

    28. [28]

      Weingarten, H. J. Org. Chem. 1964, 29, 3624.  doi: 10.1021/jo01035a046

    29. [29]

      Tlili, A.; Xia, N.; Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 8725.  doi: 10.1002/anie.v48:46

    30. [30]

      Muhizi, T.; Coma, V.; Grelier, S. Carbohydr. Res. 2008, 343, 2369.  doi: 10.1016/j.carres.2008.07.005

    31. [31]

      Wang, Y. B.; Zhang, Y.; Yang, B. B.; Zhang, A.; Yao, Q. Z. Org. Biomol. Chem. 2015, 13, 4101.  doi: 10.1039/C5OB00045A

    32. [32]

      Suresh, P.; Pitchumani, K. J. Org. Chem. 2008, 73, 9121.  doi: 10.1021/jo801811w

    33. [33]

      Wu, F. T.; Yan, N. N.; Liu, P.; Xie, J. W.; Liu, Y.; Dai, B. Tetrahedron Lett. 2014, 55, 3249.  doi: 10.1016/j.tetlet.2014.04.039

    34. [34]

      Shen, G.; Zhao, L.; Bao, W. Chem. Res. Chin. Univ. 2016, 32, 947.  doi: 10.1007/s40242-016-6263-7

    35. [35]

      Farahat, A. A.; Boykin, D. W. Tetrahedron Lett. 2014, 55, 3049.  doi: 10.1016/j.tetlet.2014.03.117

    36. [36]

      Ding, X. M.; Huang, M. N.; Yi, Z.; Du, D. C.; Zhu, X. H.; Wan, Y. Q. J. Org. Chem. 2017, 82, 5416.  doi: 10.1021/acs.joc.7b00290

    37. [37]

      Rao, R. K.; Naidu, A. B.; Jaseer, E. A.; Sekar, G. Tetrahedron 2009, 40, 4619.
       

    38. [38]

      Bollenbach, M.; Aquino, P.; AraujoJunior, J.X. Bourguignon, J. J.; Bihel, F.; Salom, C.; Wagner, P.; Schmitt, M. Chem. Eur. J. 2017, 23, 13676.  doi: 10.1002/chem.201700832

    39. [39]

      Liwosz, T. W.; Chemler, S. R. Synlett 2014, 26, 335.  doi: 10.1055/s-00000083

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    3. [3]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    4. [4]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    5. [5]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    8. [8]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    12. [12]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    13. [13]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    14. [14]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    15. [15]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

    16. [16]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    17. [17]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    18. [18]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    19. [19]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    20. [20]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

Metrics
  • PDF Downloads(7)
  • Abstract views(1172)
  • HTML views(211)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return