Citation: Fan Chunying, Wu Wanhua, Yang Cheng. Triplet-Triplet Annihilation Upconversion in Molecular Aggregation Systems[J]. Chinese Journal of Organic Chemistry, ;2018, 38(6): 1377-1393. doi: 10.6023/cjoc201712034 shu

Triplet-Triplet Annihilation Upconversion in Molecular Aggregation Systems

  • Corresponding author: Wu Wanhua, wuwanhua@scu.edu.cn Yang Cheng, yangchengyc@scu.edu.cn
  • Received Date: 25 December 2017
    Revised Date: 29 January 2018
    Available Online: 6 June 2018

    Fund Project: the National Key Research and Development Program of China 2017YFA0505903the National Natural Science Foundation of China 21572142the National Natural Science Foundation of China 21372165the National Natural Science Foundation of China 21402129Project supported by the National Natural Science Foundation of China (Nos. 21402129, 21572142, 21372165) and the National Key Research and Development Program of China (No. 2017YFA0505903)

Figures(25)

  • Triplet-triplet annihilation (TTA) upconversion, a unique technique that converting low-energy photons into higher-energy photons, has attracted much attention owing to its potential applications in various fields, such as solar cells, bioimaging, photocatalysis and photoelectric device. TTA upconversion has several advantages over other upconversion methods, such as allowing for the use of low excitation power density, readily tunable excitation/emission wavelength and high upconversion quantum yield. Both triplet-triplet energy transfer (TTET) and TTA processes in TTA upconversion follow the Dexter energy transfer mechanism. The components involved have to diffuse in the media and collide within the lifetime of their excited states to complete the energy transfer. Thus, most efficient TTA-based upconversion has been achieved with donor-acceptor pairs that are molecularly dissolved in deaerated organic solvents, which however significantly limited their practical applications. In recent years, more and more efforts have beendevoted to explore high-efficient TTA upconversion under aerated conditions by employing specific solid materials or viscous liquids as matrices to block oxygen. The recent advance of research of TTA upconversion in aggregated systems is summarized, including rubbery polymers, gels, molecular crystals, nanoparticles and supramolecular self-assemblies.
  • 加载中
    1. [1]

      (a) Islangulov, R. R.; Kozlov, D. V.; Castellano, F. N. Chem. Commun. 2005, 3776.
      (b) Chen, H. C.; Hung, C. Y.; Wang, K. H.; Chen, H. L.; Fann, W. S.; Chien, F. C.; Chen, P.; Chow, T. J.; Hsu, C. P.; Sun, S. S. Chem. Commun. 2009, 4064.
      (c) Schulze, T. F.; Czolk, J.; Cheng, Y. -Y.; Fückel, B.; MacQueen, R. W.; Khoury, T.; Crossley, M. J.; Stannowski, B.; Lips, K.; Lemmer, U.; Colsmann, A.; Schmidt, T. W. J. Phys. Chem. C 2012, 116, 22794.
      (d) Singh-Rachford, T. N.; Castellano, F. N. J. Phys. Chem. A 2008, 112, 3550.
      (e) Singhrachford, T. N.; Haefele, A.; Ziessel, R.; Castellano, F. N. J. Am. Chem. Soc. 2008, 130, 16164.

    2. [2]

      Zou, W.; Visser, C.; Maduro, J. A.; Pshenichnikov, M. S.; Hummelen, J. C. Nat. Photonics. 2012, 6, 560.  doi: 10.1038/nphoton.2012.158

    3. [3]

      (a) Qian, L.; Yang, T.; Wei, F.; Li, F. J. Am. Chem. Soc. 2012, 134, 5390.
      (b) Wohnhaas, C.; Turshatov, A.; Mailänder, V.; Lorenz, S.; Baluschev, S.; Miteva, T.; Landfester, K. Macromol. Biosci. 2011, 11, 772.
      (c) Kim, J. H.; Kim, J. H. J. Am. Chem. Soc. 2012, 134, 17478.

    4. [4]

      (a) Islangulov, R. R.; Castellano, F. N. Angew. Chem., Int. Ed. 2006, 45, 5957.
      (b) Wu, W.; Wu, W.; Ji, S.; Guo, H.; Zhao, J. J. Organomet. Chem. 2011, 696, 2388.
      (c) Yang, C.; Nakamura, A.; Fukuhara, G.; Origane, Y.; Mori, T.; Wada, T.; Inoue, Y. J. Org. Chem. 2006, 71, 3126.
      (d) Yang, C.; Nakamura, A.; Wada, T.; Inoue, Y. Org. Lett. 2006, 8, 3005.
      (e) Yao, J.; Yan, Z.; Ji, J.; Wu, W.; Yang, C.; Nishijima, M.; Fukuhara, G.; Mori, T.; Inoue, Y. J. Am. Chem. Soc. 2014, 136, 6916.

    5. [5]

      Wang, F.; Liu, X. Chem. Soc. Rev. 2009, 38, 976.  doi: 10.1039/b809132n

    6. [6]

      (a) Zhao, J.; Ji, S.; Guo, H. RSC Adv. 2011, 1, 937.
      (b) Zhao, J.; Xu, K.; Yang, W.; Wang, Z.; Zhong, F. Chem. Soc. Rev. 2015, 44, 8904.

    7. [7]

      Baluschev, S.; Miteva, T.; Yakutkin, V.; Nelles, G.; Yasuda, A.; Wegner, G. Phys. Rev. Lett. 2006, 97, 143903.  doi: 10.1103/PhysRevLett.97.143903

    8. [8]

      (a) Amemori, S.; Sasaki, Y.; Yanai, N.; Kimizuka, N. J. Am. Chem. Soc. 2016, 138, 8702.
      (b) Cheng, Y. Y.; Fuckel, B.; Khoury, T.; Clady, R. G.; Ekins-Daukes, N. J.; Crossley, M. J.; Schmidt, T. W. J. Phys. Chem. A 2011, 115, 1047.

    9. [9]

      (a) Wu, W.; Zhao, J.; Sun, J.; Huang, L.; Yi, X. J. Mater. Chem. C 2013, 1, 705.
      (b) Wu, W.; Ji, S.; Wu, W.; Guo, H.; Wang, X.; Zhao, J.; Wang, Z. Sens. Actuators, B: Chem. 2010, 149, 395.
      (c) Wu, W.; Zhao, J.; Guo, H.; Sun, J.; Ji, S.; Wang, Z. Chemistry 2012, 18, 1961.
      (d) Wu, W.; Sun, J.; Ji, S.; Wu, W.; Zhao, J.; Guo, H. Dalton Trans. 2011, 40, 11550.
      (e) Wu, W.; Liu, L.; Cui, X.; Zhang, C.; Zhao, J. Dalton Trans. 2013, 42, 14374.
      (f) Wu, W.; Sun, J.; Cui, X.; Zhao, J. J. Mater. Chem. C 2013, 1, 4577.
      (g) Wu, W.; Guo, H.; Wu, W.; Ji, S.; Zhao, J. J. Org. Chem. 2011, 76, 7056.

    10. [10]

      Shirakawa, M.; Fujita, N.; Tani, T.; Kaneko, K.; Shinkai, S. Chem. Commun. 2005, 4149.
       

    11. [11]

      Monguzzi, A.; Tubino, R.; Meinardi, F. J. Phys. Chem. A 2009, 113, 1171.  doi: 10.1021/jp809971u

    12. [12]

      Murakami, Y.; Kikuchi, H.; Kawai, A. J. Phys. Chem. B 2013, 117, 2487.  doi: 10.1021/jp3124082

    13. [13]

      (a) Zhao, J.; Wu, W.; Sun, J.; Guo, S. Chem. Soc. Rev. 2013, 42, 5323.
      (b) Cui, X.; Zhao, J.; Mohmood, Z.; Zhang, C. Chem. Rec. 2016, 16, 173.
      (c) Singh-Rachford, T. N.; Castellano, F. N. Coord. Chem. Rev. 2010, 254, 2560.

    14. [14]

      (a) Khnayzer, R. S.; Blumhoff, J.; Harrington, J. A.; Haefele, A.; Deng, F.; Castellano, F. N. Chem. Commun. 2012, 48, 209.
      (b) Kim, H. I.; Weon, S.; Kang, H.; Hagstrom, A. L.; Kwon, O. S.; Lee, Y. S.; Choi, W.; Kim, J. H. Environ. Sci. Technol. 2016, 50, 11184.

    15. [15]

      Liu, Q.; Yin, B.; Yang, T.; Yang, Y.; Shen, Z.; Yao, P.; Li, F. J. Am. Chem. Soc. 2013, 135, 5029.  doi: 10.1021/ja3104268

    16. [16]

      Yanai, N.; Kimizuka, N. Chem. Commun. 2016, 52, 5354.  doi: 10.1039/C6CC00089D

    17. [17]

      Simon, Y. C.; Weder, C. J. Mater. Chem. 2012, 22, 20817.  doi: 10.1039/c2jm33654e

    18. [18]

      Kimizuka, N.; Yanai, N.; Morikawa, M. A. Langmuir 2016, 32, 12304.  doi: 10.1021/acs.langmuir.6b03363

    19. [19]

      Islangulov, R. R.; Lott, J.; Weder, C.; Castellano, F. N. J. Am. Chem. Soc. 2007, 129, 12652.  doi: 10.1021/ja075014k

    20. [20]

      Singhrachford, T. N.; Lott, J.; Weder, C.; Castellano, F. N. J. Am. Chem. Soc. 2009, 131, 12007.  doi: 10.1021/ja904696n

    21. [21]

      (a) Merkel, P. B.; Dinnocenzo, J. P. J. Phys. Chem. A 2008, 112, 10790.
      (b) Merkel, P. B.; Dinnocenzo, J. P. Luminescence 2009, 129, 303.
      (c) Lee, S. H.; Lott, J. R.; Simon, Y. C.; Weder, C. J. Mater. Chem. C 2013, 1, 5142.

    22. [22]

      Wu, W.; Guo, H.; Wu, W.; Ji, S.; Zhao, J. J. Org. Chem. 2011, 76, 7056.  doi: 10.1021/jo200990y

    23. [23]

      Kim, J.-H.; Deng, F.; Castellano, F. N.; Kim, J.-H. Chem. Mater. 2012, 24, 2250.  doi: 10.1021/cm3012414

    24. [24]

      Baluschev, S.; Jacob, J.; Avlasevich, Y. S.; Keivanidis, P. E.; Miteva, T.; Yasuda, A.; Nelles, G.; Grimsdale, A. C.; Müllen, K.; Wegner, G. ChemPhysChem 2005, 6, 1250.  doi: 10.1002/(ISSN)1439-7641

    25. [25]

      Boutin, P. C.; Ghiggino, K. P.; Kelly, T. L.; Steer, R. P. J. Phys. Chem. Lett. 2013, 4, 4113.  doi: 10.1021/jz402311j

    26. [26]

      (a) Wu, W.; Cui, X.; Zhao, J. Chem. Commun. 2013, 49, 9009.
      (b) Wu, W.; Zhao, J.; Sun, J.; Guo, S. J. Org. Chem. 2012, 77, 5305.

    27. [27]

      Wu, T. C.; Congreve, D. N.; Baldo, M. A. Appl. Phys. Lett. 2015, 107, 031103.  doi: 10.1063/1.4926914

    28. [28]

      Peng, J.; Guo, X.; Jiang, X.; Zhao, D.; Ma, Y. Chem. Sci. 2016, 7, 1233.  doi: 10.1039/C5SC03245H

    29. [29]

      Vadrucci, R.; Monguzzi, A.; Saenz, F.; Wilts, B. D.; Simon, Y. C.; Weder, C. Adv. Mater. 2017, 1702992.

    30. [30]

      Campione, M.; Ruggerone, R.; Tavazzi, S.; Moret, M. J. Mater. Chem. 2005, 15, 2437.  doi: 10.1039/b415912h

    31. [31]

      Monguzzi, A.; Tubino, R.; Hoseinkhani, S.; Campione, M.; Meinardi, F. Phys. Chem. Chem. Phys. 2012, 14, 4322.  doi: 10.1039/c2cp23900k

    32. [32]

      (a) Goudarzi, H.; Keivanidis, P. E. J. Phys. Chem. C 2014, 118, 14256.
      (b) Vadrucci, R.; Weder, C.; Simon, Y. C. J. Mater. Chem. C 2014, 2, 2837.

    33. [33]

      Wuest, J. D. Nat. Chem. 2012, 4, 74.  doi: 10.1038/nchem.1256

    34. [34]

      Hosoyamada, M.; Yanai, N.; Ogawa, T.; Kimizuka, N. Chemistry 2016, 22, 2060.  doi: 10.1002/chem.201503318

    35. [35]

      Sripathy, K.; MacQueen, R. W.; Peterson, J. R.; Cheng, Y. Y.; Dvořák, M.; McCamey, D. R.; Treat, N. D.; Stingelin, N.; Schmidt, T. W. J. Mater. Chem. C 2015, 3, 616.  doi: 10.1039/C4TC02584A

    36. [36]

      (a) Lv, K.; Qin, L.; Wang, X.; Zhang, L.; Liu, M. Phys. Chem. Chem. Phys. 2013, 15, 20197.
      (b) Kira, Y.; Okazaki, Y.; Sawada, T.; Takafuji, M.; Ihara, H. Amino Acids 2010, 39, 587.

    37. [37]

      Duan, P.; Yanai, N.; Nagatomi, H.; Kimizuka, N. J. Am. Chem. Soc. 2015, 137, 1887.  doi: 10.1021/ja511061h

    38. [38]

      Haring, M.; Perez-Ruiz, R.; Jacobi von Wangelin, A.; Diaz, D. D. Chem. Commun. 2015, 51, 16848.  doi: 10.1039/C5CC06917C

    39. [39]

      Liu, X.; Fei, J.; Zhu, P.; Li, J. Chem.-Asian. J. 2016, 11, 2700.  doi: 10.1002/asia.201600500

    40. [40]

      (a) Yan, Z.; Huang, Q.; Liang, W.; Yu, X.; Zhou, D.; Wu, W.; Chruma, J. J.; Yang, C. Org. Lett. 2017, 19, 898.
      (b) Huang, Q.; Jiang, L.; Liang, W.; Gui, J.; Xu, D.; Wu, W.; Nakai, Y.; Nishijima, M.; Fukuhara, G.; Mori, T.; Inoue, Y.; Yang, C. J. Org. Chem. 2016, 81, 3430.
      (c) Yao, J.; Wu, W.; Liang, W.; Feng, Y.; Zhou, D.; Chruma, J. J.; Fukuhara, G.; Mori, T.; Inoue, Y.; Yang, C. Angew. Chem., Int. Ed. 2017, 56, 6869.
      (d) Ji, J.; Chereddy, S. S.; Ren, Y.; Chen, X.; Su, D.; Zhong, Z.; Mori, T.; Inoue, Y.; Wu, W.; Yang, C. Photochem. Photobiol. A: Chem. 2017.
      (e) Gui, J. -C.; Yan, Z. -Q.; Peng, Y.; Yi, J. -G.; Zhou, D. -Y.; Su, D.; Zhong, Z. -H.; Gao, G. -W.; Wu, W. -H.; Yang, C. Chin. Chem. Lett. 2016, 27, 1017.
      (f) Wang, Q.; Yang, C.; Ke, C.; Fukuhara, G.; Mori, T.; Liu, Y.; Inoue, Y. Chem. Commun. 2011, 47, 6849.
      (g) Liang, W.; Yang, C.; Nishijima, M.; Fukuhara, G.; Mori, T.; Mele, A.; Castiglione, F.; Caldera, F.; Trotta, F.; Inoue, Y. Beilstain J. Org. Chem. 2012, 8, 1305.
      (h) Liang, W.; Yang, C.; Zhou, D.; Haneoka, H.; Nishijima, M.; Fukuhara, G.; Mori, T.; Castiglione, F.; Mele, A.; Caldera, F.; Trotta, F.; Inoue, Y. Chem. Commun. 2013, 49, 3510.
      (i) Wang, Y.; Qiao, X.; Li, W.; Zhou, Y.; Jiao, Y.; Yang, C.; Dong, C.; Inoue, Y.; Shuang, S. Anal. Chim. Acta 2009, 650, 124.
      (j) Yi, J.; Liang, W.; Wei, X.; Yao, J.; Yan, Z.; Su, D.; Zhong, Z.; Gao, G.; Wu, W.; Yang, C. Chin. Chem. Lett. 2017, 29, 87.

    41. [41]

      Fan, C.; Wu, W.; Chruma, J. J.; Zhao, J.; Yang, C. J. Am. Chem. Soc. 2016, 138, 15405.  doi: 10.1021/jacs.6b07946

    42. [42]

      Duan, P.; Yanai, N.; Kimizuka, N. J. Am. Chem. Soc. 2013, 135, 19056.  doi: 10.1021/ja411316s

    43. [43]

      Hisamitsu, S.; Yanai, N.; Kimizuka, N. Angew. Chem., Int. Ed. 2015, 54, 11550.  doi: 10.1002/anie.201505168

    44. [44]

      Ogawa, T.; Yanai, N.; Monguzzi, A.; Kimizuka, N. Sci. Rep. 2015, 5, 10882.  doi: 10.1038/srep10882

    45. [45]

      Kouno, H.; Ogawa, T.; Amemori, S.; Mahato, P.; Yanai, N.; Kimizuka, N. Chem. Sci. 2016, 7, 5224.  doi: 10.1039/C6SC01047D

    46. [46]

      Tanaka, K.; Inafuku, K.; Chujo, Y. Chem. Commun. 2010, 46, 4378.  doi: 10.1039/c0cc00266f

    47. [47]

      Turshatov, A.; Busko, D.; Baluschev, S.; Miteva, T.; Landfester, K. New J. Phys. 2011, 13, 083035.  doi: 10.1088/1367-2630/13/8/083035

    48. [48]

      Monguzzi, A.; Frigoli, M.; Larpent, C.; Tubino, R.; Meinardi, F. Adv. Funct. Mater. 2012, 22, 139.  doi: 10.1002/adfm.201101709

    49. [49]

      Wohnhaas, C.; Turshatov, A.; Mailander, V.; Lorenz, S.; Baluschev, S.; Miteva, T.; Landfester, K. Macromol. Biosci. 2011, 11, 772.  doi: 10.1002/mabi.201000451

    50. [50]

      Liu, Q.; Yang, T.; Feng, W.; Li, F. J. Am. Chem. Soc. 2012, 134, 5390.  doi: 10.1021/ja3003638

    51. [51]

      Kwon, O. S.; Song, H. S.; Conde, J.; Kim, H. I.; Artzi, N.; Kim, J. H. ACS Nano 2016, 10, 1512.  doi: 10.1021/acsnano.5b07075

    52. [52]

      Wang, W.; Liu, Q.; Zhan, C.; Barhoumi, A.; Yang, T.; Wylie, R. G.; Armstrong, P. A.; Kohane, D. S. Nano Lett. 2015, 15, 6332.  doi: 10.1021/acs.nanolett.5b01325

    53. [53]

      Liu, Q.; Wang, W.; Zhan, C.; Yang, T.; Kohane, D. S. Nano Lett. 2016, 16, 4516.  doi: 10.1021/acs.nanolett.6b01730

    54. [54]

      Ling, H.; Zhao, Y.; Zhang, H.; Huang, K.; Yang, J.; Han, G. Angew. Chem., Int. Ed. 2017, 56, 14400.  doi: 10.1002/anie.201704430

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    3. [3]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    4. [4]

      Yecang Tang Shan Ling Zhen Fang . Exploration of a Hierarchical and Integration-Oriented Talent Training Model in the Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 188-192. doi: 10.12461/PKU.DXHX202405107

    5. [5]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    6. [6]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    7. [7]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    8. [8]

      Fengmiao Yu Yang Sheng Chanyue Li Bao Li . The Three Lives of Aspirin. University Chemistry, 2024, 39(9): 115-121. doi: 10.12461/PKU.DXHX202402033

    9. [9]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    10. [10]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    11. [11]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    12. [12]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    13. [13]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    14. [14]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    15. [15]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    16. [16]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    17. [17]

      Liangyu Gong Jie Wang Fengyu Du Lubin Xu Chuanli Ma Shihai Yan Zhuwei Song Fuheng Liu Xiuzhong Wang . Construction and Practice of “One-Point, Two-Lines and Three-Sides” Innovative Experimental Platform. University Chemistry, 2024, 39(4): 26-32. doi: 10.3866/PKU.DXHX202308023

    18. [18]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    19. [19]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(342)
  • Abstract views(13984)
  • HTML views(5597)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return