Citation: Gao Yunpeng, Wang Jianbo. Continuous Flow Reaction of Diazo Compounds[J]. Chinese Journal of Organic Chemistry, ;2018, 38(6): 1275-1291. doi: 10.6023/cjoc201712029 shu

Continuous Flow Reaction of Diazo Compounds

  • Corresponding author: Wang Jianbo, wangjb@pku.edu.cn
  • Received Date: 20 December 2017
    Revised Date: 22 January 2018
    Available Online: 6 June 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21332002) and the National Basic Research Program of China (973 Program, No. 2015CB856600)the National Basic Research Program of China 973 Programthe National Natural Science Foundation of China 21332002the National Basic Research Program of China 2015CB856600

Figures(31)

  • Diazo compounds are versatile building blocks in organic synthesis. They are served as 1, 3-dipoles, nucleophiles and carbene precursors in the construction of various organic molecules. However, the utility of diazo compounds is significantly limited by toxicity, instability and explosive potential. The application of continuous flow technology in this field could ensure the safety of these reactions. It also provides the possibility to utilize diazo compounds in a large scale. Categorized by the types of diazo compounds, the application of continuous flow technology in transformations of diazo compounds is systematically reviewed in this paper.
  • 加载中
    1. [1]

      For selected reviews, see: (a) Ye, T. ; McKervey, M. A. Chem. Rev. 1994, 94, 1091.
      (b) Doyle, M. P. ; McKervey, M. A. ; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides, Wiley, New York, 1998.
      (c) Zhang, Z. ; Wang, J. Tetrahedron 2008, 64, 6577.
      (d) Davies, H. M. L. ; Denton, J. R. Chem. Soc. Rev. 2009, 38, 3061.
      (e) Ford, A. ; Miel, H. ; Ring, A. ; Slattery, C. N. ; Maguire, A. R. ; McKervey, M. A. Chem. Rev. 2015, 115, 9981.
      (f) Qiu, D. ; Qiu, M. ; Ma, R. ; Zhang, Y. ; Wang, J. Acta Chim. Sinica 2016, 74, 472(in Chinese).
      (邱頔, 邱孟龙, 马戎, 张艳, 王剑波, 化学学报, 2016, 74, 472. )
      (g) Liu, L. ; Zhang, J. Chin. J. Org. Chem. 2017, 37, 1117(in Chinese).
      (刘路, 张俊良, 有机化学, 2017, 37, 1117. )

    2. [2]

      (a) Zhang, Y. ; Wang, J. Eur. J. Org. Chem. 2011, 6, 1015.
      (b) Shao, Z. ; Zhang, H. Chem. Soc. Rev. 2012, 41, 560.
      (c) Barluenga, J. ; Valdés, C. Angew. Chem., Int. Ed. 2011, 50, 7486.
      (d) Xiao, Q. ; Zhang, Y. ; Wang, J. Acc. Chem. Res. 2013, 46, 236.
      (e) Xia, Y. ; Zhang, Y. ; Wang, J. ACS Catal. 2013, 3, 2586.
      (f) Liu, Z. ; Wang, J. J. Org. Chem. 2013, 78, 10024.
      (g) Barroso, R. ; Cabal, M. P. ; Valdés, C. Synthesis 2017, 49, 4434.
      (h) Xia, Y. ; Di, Q. ; Wang J. Chem. Rev. 2017, 117, 13810.

    3. [3]

      For selected reviews, see: (a) Noël, T. ; Buchwald, S. L. Chem. Soc. Rev. 2011, 40, 5010.
      (b) Pastre, J. C. ; Browne, D. L. ; Ley, S. V. Chem. Soc. Rev. 2013, 42, 8849.
      (c) Gutmann, B. ; Cantillo, D. ; Kappe, C. O. Angew. Chem., Int. Ed. 2015, 54, 6688.
      (d) Cambié, D. ; Bottecchia, C. ; Straathof, N. J. W. ; Hessel, V. ; Noël, T. Chem. Rev. 2016, 116, 10276.
      (e) Britton, J. ; Raston, C. L. Chem. Soc. Rev. 2017, 46, 1250.
      (f) Plutschack, M. B. ; Pieber, B. ; Gilmore, K. ; Seeberger, P. H. Chem. Rev. 2017, 117, 11796.

    4. [4]

      (a) Müller, S. T. R. ; Wirth, T. ChemSusChem 2015, 8, 245.
      (b) Deadman, B. J. ; Collins, S. G. ; Maguire, A. R. Chem. -Eur. J. 2015, 21, 2298.
      (c) Movsisyan, M. ; Delbeke, E. I. P. ; Berton, J. K. E. T. ; Battilocchio, C. ; Ley, S. V. ; Stevens, C. V. Chem. Soc. Rev. 2016, 45, 4892.

    5. [5]

      Archibald, T. G. ; Barnard, J. C. ; Reese, H. F. US 5854405, 1998[Chem. Abstr. 1999, 130, 83188].

    6. [6]

      Proctor, L. D.; Warr, A. J. Org. Process Res. Dev. 2002, 6, 884.  doi: 10.1021/op020049k

    7. [7]

      Ferstl, W. F.; Schwarzer, M. S.; Löbbecke, S. L. Chem. Ing. Tech. 2004, 76, 1326.
       

    8. [8]

      Struempel, M.; Ondruschka, B.; Daute, R.; Stark, A. Green Chem. 2008, 10, 41.  doi: 10.1039/B710554A

    9. [9]

      Maurya, R. A.; Park, C. P.; Lee, J. H.; Kim, D.-P. Angew. Chem., Int. Ed. 2011, 50, 5952.  doi: 10.1002/anie.v50.26

    10. [10]

      (a) Mastronardi, F. ; Gutmann, B. ; Kappe, C. O. Org. Lett. 2013, 15, 5590.
      (b) Brzozowski, M. ; O'Brien, M. ; Ley, S. V. ; Polyzos, A. Acc. Chem. Res. 2015, 48, 349.

    11. [11]

      Pinho, V. D.; Gutmann, B.; Miranda, L. S. M.; de Souza, R. O. M. A.; Kappe, C. O. J. Org. Chem. 2014, 79, 1555.  doi: 10.1021/jo402849z

    12. [12]

      Pinho, V. D.; Gutmann, B.; Kappe, C. O. RSC Adv. 2014, 4, 37419.  doi: 10.1039/C4RA08113G

    13. [13]

      (a) Dallinger, D. ; Pinho, V. D. ; Gutmann, B. ; Kappe, C. O. J. Org. Chem. 2016, 81, 5814.
      (b) Garbarino, S. ; Guerra, J. ; Poechlauer, P. ; Gutmann, B. ; Kappe, C. O. J. Flow Chem. 2016, 6, 211.
      (c) Dallinger, D. ; Kappe, C. O. Nat. Protoc. 2017, 12, 2138.

    14. [14]

      Rossi, E.; Woehl, P.; Maggini, M. Org. Process Res. Dev. 2012, 16, 1146.  doi: 10.1021/op200110a

    15. [15]

      Lehmann, H. Green Chem. 2017, 19, 1449.  doi: 10.1039/C6GC03066A

    16. [16]

      Pollet, P.; Cope, E. D.; Kassner, M. K.; Charney, R.; Terett, S. H.; Richman, K. W.; Dubay, W.; Stringer, J.; Eckert, C. A.; Liotta, C. L. Ind. Eng. Chem. Res. 2009, 48, 7032.  doi: 10.1021/ie801885y

    17. [17]

      Martin, L. J.; Marzinzik, A. L.; Ley, S. V.; Baxendale, I. R. Org. Lett. 2011, 13, 320.  doi: 10.1021/ol1027927

    18. [18]

      (a) Mifune, Y. ; Fuse, S. ; Tanaka, H. J. Flow Chem. 2014, 4, 173.
      (b) Fuse, S. ; Otake, Y. ; Mifune, Y. ; Tanaka, H. Aust. J. Chem. 2015, 68, 1657.

    19. [19]

      Audubert, C.; Gamboa Marin, O. J.; Lebel, H. Angew. Chem., Int. Ed. 2017, 56, 6294.  doi: 10.1002/anie.201612235

    20. [20]

      Barluenga, J.; Tomás-Gamasa, M.; Aznar, F.; Valdés, C. Nat. Chem. 2009, 1, 494.  doi: 10.1038/nchem.328

    21. [21]

      Kupracz, L.; Kirschning, A. J. Flow Chem. 2012, 3, 11.
       

    22. [22]

      Lévesque, É.; Laporte, S. T.; Charette, A. B. Angew. Chem., Int. Ed. 2017, 56, 837.  doi: 10.1002/anie.201608444

    23. [23]

      Rossi, E.; Carofiglio, T.; Venturi, A.; Ndobe, A.; Muccini, M.; Maggini, M. Energy Environ. Sci. 2011, 4, 725.  doi: 10.1039/C0EE00314J

    24. [24]

      Tran, D. N.; Battilocchio, C.; Lou, S.-B.; Hawkins, J. M.; Ley, S. V. Chem. Sci. 2015, 6, 1120.  doi: 10.1039/C4SC03072A

    25. [25]

      Battilocchio, C.; Feist, F.; Hafner, A.; Simon, M.; Tran, D. N.; Allwood, D. M.; Blakemore, D. C.; Ley, S. V. Nat. Chem. 2016, 8, 360.  doi: 10.1038/nchem.2439

    26. [26]

      Roda, N. M.; Tran, D. N.; Battilocchio, C.; Labes, R.; Ingham, R. J.; Hawkins, J. M.; Ley, S. V. Org. Biomol. Chem. 2015, 13, 2550.  doi: 10.1039/C5OB00019J

    27. [27]

      Poh, J.-S.; Tran, D. N.; Battilocchio, C.; Hawkins, J. M.; Ley, S. V. Angew. Chem., Int. Ed. 2015, 54, 7920.  doi: 10.1002/anie.201501538

    28. [28]

      Poh, J.-S.; Makai, S.; vonKeutz, T.; Tran, D. N.; Battilocchio, C.; Pasau, P.; Ley, S. V. Angew. Chem., Int. Ed. 2017, 56, 1864.  doi: 10.1002/anie.201611067

    29. [29]

      Majchrzak, M. W.; Bekhazi, M.; Tse-Sheepy, I.; Warkentin, J. J. Org. Chem. 1989, 54, 1842.  doi: 10.1021/jo00269a019

    30. [30]

      Greb, A.; Poh, J.-S.; Greed, S.; Battilocchio, C.; Pasau, P.; Blakemore, D. C.; Ley, S. V. Angew. Chem., Int. Ed. 2017, 56, 16602.  doi: 10.1002/anie.201710445

    31. [31]

      Delville, M. M. E.; van Hest, J. C. M.; Rutjes, F. P. J. T. Beilstein J. Org. Chem. 2013, 9, 1813.  doi: 10.3762/bjoc.9.211

    32. [32]

      Maurya, R. A.; Min, K.-I.; Kim, D.-P. Green Chem. 2013, 16, 116.
       

    33. [33]

      Müller, S. T. R.; Smith, D.; Hellier, P.; Wirth, T. Synlett 2014, 25, 871.  doi: 10.1055/s-00000083

    34. [34]

      Müller, S. T. R.; Hokamp, T.; Ehrmann, S.; Hellier, P.; Wirth, T. Chem.-Eur. J. 2016, 22, 11940.  doi: 10.1002/chem.201602133

    35. [35]

      (a) Burguete, M. I. ; Cornejo, A. ; García-Verdugo, E. ; García, J. ; Gil, M. J. ; Luis, S. V. ; Martínez-Merino, V. ; Mayoral, J. A. ; Sokolova, M. Green Chem. 2007, 9, 1091.
      (b) Aranda, C. ; Cornejo, A. ; Fraile, J. M. ; García-Verdugo, E. ; Gil, M. J. ; Luis, S. V. ; Mayoral, J. A. ; Martinez-Merino, V. ; Ochoa, Z. Green Chem. 2011, 13, 983.

    36. [36]

      Castano, B.; Gallo, E.; Cole-Hamilton, D. J.; Santo, V. D.; Psaro, R.; Caselli, A. Green Chem. 2014, 16, 3202.  doi: 10.1039/C4GC00119B

    37. [37]

      Maestre, L.; Ozkal, E.; Ayats, C.; Beltrán, Á.; Díaz-Requejo, M. M.; Pérez, P. J.; Pericìs, M. A. Chem. Sci. 2015, 6, 1510.  doi: 10.1039/C4SC03277B

    38. [38]

      Bartrum, H. E.; Blakemore, D. C.; Moody, C. J.; Hayes, C. J. J. Org. Chem. 2010, 75, 8674.  doi: 10.1021/jo101783m

    39. [39]

      Zhang, X.; Stefanick, S.; Villani, F. J. Org. Process Res. Dev. 2004, 8, 455.  doi: 10.1021/op034193x

    40. [40]

      (a) Bartrum, H. E. ; Blakemore, D. C. ; Moody, C. J. ; Hayes, C. J. Chem. -Eur. J. 2011, 17, 9586.
      (b) Bartrum, H. E. ; Blakemore, D. C. ; Moody, C. J. ; Hayes, C. J. Tetrahedron 2013, 69, 2276.

    41. [41]

      Nicolle, S. M.; Hayes, C. J.; Moody, C. J. Chem.-Eur. J. 2015, 21, 4576.  doi: 10.1002/chem.201500118

    42. [42]

      Nicolle, S. M.; Nortcliffe, A.; Bartrum, H. E.; Lewis, W.; Hayes, C. J.; Moody, C. J. Chem.-Eur. J. 2017, 23, 13623.  doi: 10.1002/chem.201703746

    43. [43]

      Rackl, D.; Yoo, C.-J.; Jones, C. W.; Davies, H. M. L. Org. Lett. 2017, 19, 3055.  doi: 10.1021/acs.orglett.7b01073

    44. [44]

      Müller, S. T. R.; Murat, A.; Maillos, D.; Lesimple, P.; Hellier, P.; Wirth, T. Chem.-Eur. J. 2015, 21, 7016.  doi: 10.1002/chem.201500416

    45. [45]

      Müller, S. T. R.; Murat, A.; Hellier, P.; Wirth, T. Org. Process Res. Dev. 2016, 20, 495.  doi: 10.1021/acs.oprd.5b00308

    46. [46]

      Deadman, B. J.; O'Mahony, R. M.; Lynch, D.; Crowley, D. C.; Collins, S. G.; Maguire, A. R. Org. Biomol. Chem. 2016, 14, 3423.  doi: 10.1039/C6OB00246C

    47. [47]

      (a) McCaw, P. G. ; Deadman, B. J. ; Maguire, A. R. ; Collins, S. G. J. Flow Chem. 2016, 6, 226.
      (b) McCaw, P. G. ; Buckley, N. M. ; Eccles, K. S. ; Lawrence, S. E. ; Maguire, A. R. ; Collins, S. G. J. Org. Chem. 2017, 82, 3666.

    48. [48]

      Gérardy, R.; Winter, M.; Vizza, A.; Monbaliu, J.-C. M. React. Chem. Eng. 2017, 2, 149.  doi: 10.1039/C6RE00184J

    49. [49]

      Fuse, S.; Otake, Y.; Nakamura, H. Eur. J. Org. Chem. 2017, 44, 6466.

    50. [50]

      Vaske, Y. S. M.; Mahoney, M. E.; Konopelski, J. P.; Rogow, D. L.; McDonald, W. J. J. Am. Chem. Soc. 2010, 132, 11379.  doi: 10.1021/ja1050023

    51. [51]

      Willumstad, T. P.; Haze, O.; Mak, X. Y.; Lam, T. Y.; Wang, Y.-P.; Danheiser, R. L. J. Org. Chem. 2013, 78, 11450.  doi: 10.1021/jo402010b

    52. [52]

      Li, M.-M.; Wei, Y.; Liu, J.; Chen, H.-W.; Lu, L.-Q.; Xiao, W.-J. J. Am. Chem. Soc. 2017, 139, 14707.  doi: 10.1021/jacs.7b08310

    53. [53]

      Garbarino, S.; Protti, S.; Basso, A. Synthesis 2015, 47, 2385.  doi: 10.1055/s-00000084

    54. [54]

      Basso, A.; Banfi, L.; Garbarino, S.; Riva, R. Angew. Chem., Int. Ed. 2013, 52, 2096.  doi: 10.1002/anie.v52.7

    55. [55]

      Musio, B.; Mariani, F.; Śliwiński, E. P.; Kabeshov, M. A.; Odajima, H.; Ley, S. V. Synthesis 2016, 48, 3515.  doi: 10.1055/s-0035-1562579

    56. [56]

      Takeda, K.; Oohara, T.; Shimada, N.; Nambu, H.; Hashimoto, S. Chem.-Eur. J. 2011, 17, 13992.  doi: 10.1002/chem.v17.50

    57. [57]

      Moschetta, E. G.; Negretti, S.; Chepiga, K. M.; Brunelli, N. A.; Labreche, Y.; Feng, Y.; Rezaei, F.; Lively, R. P.; Koros, W. J.; Davies, H. M. L.; Jones, C. W. Angew. Chem., Int. Ed. 2015, 54, 6470.  doi: 10.1002/anie.201500841

    58. [58]

      Pasceri, R.; Bartrum, H. E.; Hayes, C. J.; Moody, C. J. Chem. Commun. 2012, 48, 12077.  doi: 10.1039/c2cc37284c

    59. [59]

      Fleming, G. S.; Beeler, A. B. Org. Lett. 2017, 19, 5268.  doi: 10.1021/acs.orglett.7b02537

    60. [60]

      Pieber, B.; Kappe, C. O. Org. Lett. 2016, 18, 1076.  doi: 10.1021/acs.orglett.6b00194

    61. [61]

      Mertens, L.; Hock, K. J.; Koenigs, R. M. Chem.-Eur. J. 2016, 22, 9542.  doi: 10.1002/chem.201601707

    62. [62]

      Hock, K. J.; Mertens, L.; Metze, F. K.; Schmittmann, C.; Koenigs, R. M. Green Chem. 2017, 19, 905.  doi: 10.1039/C6GC03187K

    63. [63]

      Hock, K. J.; Mertens, L.; Koenigs, R. M. Chem. Commun. 2016, 52, 13783.  doi: 10.1039/C6CC07745E

    64. [64]

      Britton, J.; Jamison, T. F. Angew. Chem., Int. Ed. 2017, 56, 8823.  doi: 10.1002/anie.v56.30

  • 加载中
    1. [1]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    2. [2]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    3. [3]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    4. [4]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    5. [5]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    6. [6]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    7. [7]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    10. [10]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    11. [11]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    12. [12]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    13. [13]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    14. [14]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    15. [15]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    16. [16]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    17. [17]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    18. [18]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    19. [19]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    20. [20]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

Metrics
  • PDF Downloads(99)
  • Abstract views(6207)
  • HTML views(2237)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return