Citation: Wu Ping, Wu Jiale, Wang Jingyi, Mei Guangjian. Catalytic Asymmetric Dehydrative Arylation of 3-Indolylmethanols with Tryptophols: Enantioselective Synthesis of Bisindolyl-Substituted Triarylmethanes[J]. Chinese Journal of Organic Chemistry, ;2018, 38(5): 1251-1260. doi: 10.6023/cjoc201711045 shu

Catalytic Asymmetric Dehydrative Arylation of 3-Indolylmethanols with Tryptophols: Enantioselective Synthesis of Bisindolyl-Substituted Triarylmethanes

  • Corresponding author: Mei Guangjian, guangjianM@jsnu.edu.cn
  • Received Date: 27 November 2017
    Revised Date: 25 December 2017
    Available Online: 3 May 2018

    Fund Project: the National Natural Science Foundation of China 21702077Natural Science Foundation of Jiangsu Province BK20170227Project supported by the National Natural Science Foundation of China (No. 21702077), the Natural Science Foundation of Jiangsu Province (No. BK20170227), the Applied Fundamental Research Project of Xuzhou City (No. KH17021)the Applied Fundamental Research Project of Xuzhou City KH17021

Figures(6)

  • The chiral triarylmethane frameworks are featured in many biologically important molecules. As a result, the synthesis of chiral triarylmethanes has received tremendous attention from the chemists. Herein, we reported the chiral phosphoric acid catalyzed dehydrative arylation of 3-indolylmethanols with tryptophols, leading to the efficient synthesis of a series of structurally diversified chiral bisindolyl-substituted triarylmethanes in moderate to good yields (up to 80% yield) with acceptable enantioselectivities (up to 88% ee). The chiral phosphoric acid played an important role not only in the dehydration of 3-indolylmethanols, but also in the control of enantioselectivity via hydrogen-bonding and ion-pairing interactions. The only byproduct was water, indicating that this catalytic asymmetric dehydrative arylation reaction was environment-friendly and in accordance with the requirements of green chemistry. In addition, the mild reaction condition and wide substrate scope of the reaction have successfully demonstrated the great potential of organocatalysis in the chiral triarylmethanes.
  • 加载中
    1. [1]

      (a) Nair, V. ; Thomas, S. ; Mathew, S. C. ; Abhilash, K. G. Tetrahedron 2006, 62, 6731.
      (b) Li, Z. ; Wang, J. ; Zhao, J. ; Zhao, C. ; Liu, X. ; Yu, X. Chin. J. Org. Chem. 2014, 34, 485(in Chinese).
      (李中贤, 王俊伟, 赵俊宏, 赵灿方, 刘小培, 余学军, 有机化学, 2014, 34, 485. )
      (c) Mondal, S. ; Panda, G. RSC Adv. 2014, 4, 28317.
      (d) Nambo, M. ; Crudden, C. M. ACS Catal. 2015, 5, 4734.

    2. [2]

      (a) Mason, C. D. ; Nord, F. F. J. Org. Chem. 1951, 16, 722.
      (b) Ghaisas, V. V. ; Kane, B. J. ; Nord, F. F. J. Org. Chem. 1958, 23, 560.
      (c) Irie, M. J. Am. Chem. Soc. 1983, 105, 2078.
      (d) Muthyala, R. ; Katritzky, A. R. ; Lan, X. F. Dyes Pigm. 1994, 25, 303.

    3. [3]

      (a) de Jong, P. C. ; van de Ven, J. ; Nortier, H. W. R. ; Maitimu-Smeele, I. ; Donker, T. H. ; Thijssen, J. H. H. ; Slee, P. H. T. J. ; Blankenstein, R. A. Cancer Res. 1997, 57, 2109.
      (b) Goss, P. E. ; Strasser, K. J. Clin. Oncol. 2001, 19, 881.

    4. [4]

      Parai, M. K.; Panda, G.; Chaturvedi, V.; Manju, Y. K.; Sinha, S. Bioorg. Med. Chem. Lett. 2008, 18, 289.
       

    5. [5]

      Ellsworth, B. A. ; Ewing, W. R. ; Jurica, E. US 2011/0082165, 2011.

    6. [6]

      (a) Cho, S. D. ; Yoon, K. ; Chintharlapalli, S. ; Abdelrahim, M. ; Lei, P. ; Hamilton, S. ; Khan, S. ; Ramaiah, S. K. ; Safe, S. Cancer Res. 2007, 67, 674.
      (b) Paira, P. ; Hazra, A. ; Kumar, S. ; Paira, R. ; Sahu, K. B. ; Naskar, S. ; Saha, P. ; Mondal, S. ; Maity, A. ; Banerjee, S. ; Mondal, N. B. Bioorg. Med. Chem. Lett. 2009, 19, 4786.
      (c) Kamal, A. ; Srikanth, Y. V. V. ; Khan, M. N. A. ; Shaik, T. B. ; Ashraf, M. Bioorg. Med. Chem. Lett. 2010, 20, 5229.
      (d) Subba Reddy, B. V. ; Rajeswari, N. ; Sarangapani, M. ; Prashanthi, Y. ; Ganji, R. J. ; Addlagatta, A. Bioorg. Med. Chem. Lett. 2012, 22, 2460.
      (e) Shiri, M. ; Zolfigol, M. A. ; Kruger, H. G. ; Tanbakouchian, Z. Chem. Rev. 2010, 110, 2250.

    7. [7]

      (a) Esquivias, J. ; Gómez Arrayás, R. ; Carretero, J. C. Angew. Chem., Int. Ed. 2006, 45, 629.
      (b) Zhang, J. ; Bellomo, A. ; Creamer, A. D. ; Dreher, S. D. ; Walsh, P. J. J. Am. Chem. Soc. 2012, 134, 13765.
      (c) Zhou, Q. ; Srinivas, H. D. ; Dasgupta, S. ; Watson, M. P. J. Am. Chem. Soc. 2013, 135, 3307.
      (d) Ji, X. ; Huang, T. ; Wu, W. ; Liang, F. ; Cao, S. Org. Lett. 2015, 17, 5096.
      (e) Xia, Y. ; Chen, L. ; Qu, P. ; Ji, G. ; Feng, S. ; Xiao, Q. ; Zhang, Y. ; Wang, J. J. Org. Chem. 2016, 81, 10484.
      (f) Liao, J. -Y. ; Ni, Q. ; Zhao, Y. Org. Lett. 2017, 19, 4074.
      (g) Zhou, T. ; Li, S. ; Huang, B. ; Li, C. ; Zhao, Y. ; Chen, J. ; Chen, A. ; Xiao, Y. ; Liu, L. ; Zhang, J. Org. Biomol. Chem. 2017, 15, 4941.
      (h) Xia, Y. ; Hu, F. ; Xia, Y. ; Liu, Z. ; Ye, F. ; Zhang, Y. ; Wang, J. Synthesis 2017, 49, 1073.
      (i) Wang, Y. ; Zhang, C. ; Wang, H. ; Jiang, Y. ; Du, X. ; Xu, D. Adv. Synth. Catal. 2017, 359, 791.

    8. [8]

      (a) Sun, F. -L. ; Zheng, X. -J. ; Gu, Q. ; He, Q. -L. ; You, S. -L. Eur. J. Org. Chem. 2010, 47.
      (b) Taylor, B. L. H. ; Harris, M. R. ; Jarvo, E. R. Angew. Chem., Int. Ed. 2012, 51, 7790.
      (c) Matthew, S. C. ; Glasspoole, B. W. ; Eisenberger, P. ; Crudden, C. M. J. Am. Chem. Soc. 2014, 136, 5828.
      (e) Zhuo, M. -H. ; Jiang, Y. -J. ; Fan, Y. -S. ; Gao, Y. ; Liu, S. ; Zhang, S. Org. Lett. 2014, 16, 1096.
      (f) Lou, Y. ; Cao, P. ; Jia, T. ; Zhang, Y. ; Wang, M. ; Liao, J. Angew. Chem., Int. Ed. 2015, 54, 12134.

    9. [9]

      (a) Bandini, M. ; Tragni, M. Org. Biomol. Chem. 2009, 7, 1501.
      (b) Emer, E. ; Sinisi, R. ; Capdevila, M. G. ; Petruzziello, D. ; De Vincentiis, F. ; Cozzi, P. G. Eur. J. Org. Chem. 2011, 647.
      (c) Sundararaju, B. ; Achard, M. ; Bruneau, C. Chem. Soc. Rev. 2012, 41, 4467.
      (d) Kumar, R. ; Van der Eycken, E. V. Chem. Soc. Rev. 2013, 42, 1121.
      (e) Naredla, R. R. ; Klumpp, D. A. Chem. Rev. 2013, 113, 6905.
      (f) Chen, L. ; Yin, X. -P. ; Wang, C. -H. ; Zhou, J. Org. Biomol. Chem. 2014, 12, 6033.
      (g) Dryzhakov, M. ; Richmond, E. ; Moran, J. Synthesis 2016, 48, 935.
      (h) Huang, J. -Z. ; Luo, S. -W. ; Gong, L. -Z. Acta Chim. Sinica 2013, 71, 879(in Chinese).
      (黄建洲, 罗时玮, 龚流柱, 化学学报, 2013, 71, 879. )
      (i) Song, J. ; Guo, C. ; Adele, A. ; Yin, H. ; Gong, L. -Z. Chem. Eur. J. 2013, 19, 3319.
      (j) Tao, Z. -L. ; Zhang, W. -Q. ; Chen, D. -F. ; Adele, A. ; Gong, L. -Z. J. Am. Chem. Soc. 2013, 135, 9255.
      (k) Wang, P. -S. ; Zhou, X. -L. ; Gong, L. -Z. Org. Lett. 2014, 16, 976.
      (l) Su, Y. -L. ; Han, Z. -Y. ; Li, Y. -H. ; Gong, L. -Z. ACS Catal. 2017, 7, 7917.
      (m) Song, J. ; Chen, D. -F. ; Gong, L. -Z. Natl. Sci. Rev. 2017, 4, 381.

    10. [10]

      Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.; Leazer, J. L. J.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B. A.; Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007, 9, 411.  doi: 10.1039/B703488C

    11. [11]

      (a) Zheng, C. ; You, S. -L. Chem. Soc. Rev. 2012, 41, 2498.
      (b) Yu, J. ; Shi, F. ; Gong, L. -Z. Acc. Chem. Res. 2011, 44, 1156.
      (c) Parmar, D. ; Sugiono, E. ; Raja, S. ; Rueping, M. Chem. Rev. 2014, 114, 9047.

    12. [12]

      (a) Mei, G. -J. ; Shi, F. J. Org. Chem. 2017, 82, 7695.
      (b) Zhu, S. ; Xu, B. ; Wang, L. ; Xiao, J. Chin. J. Org. Chem. 2016, 36, 1229(in Chinese).
      (朱帅, 徐鲁斌, 王亮, 肖建, 有机化学, 2016, 36, 1229. )
      (c) Wang, L. ; Chen, Y. -Y. ; Xiao, J. Asian J. Org. Chem. 2014, 3, 1036.

    13. [13]

      (a) Zhou, L. J. ; Zhang, Y. C. ; Zhao, J. J. ; Shi, F. ; Tu, S. J. J. Org. Chem. 2014, 79, 10390.
      (b) Wang, X. X. ; Liu, J. ; Xu, L. B. ; Hao, Z. H. ; Wang, L. ; Xiao, J. RSC Adv. 2015, 5, 101713.
      (c) Xiao, J. ; Wen, H. ; Wang, L. ; Xu, L. ; Hao, Z. ; Shao, C. -L. ; Wang, C. -Y. Green Chem. 2016, 18, 1032.

    14. [14]

      (a) Sun, F. -L. ; Zeng, M. ; Gu, Q. ; You, S. -L. Chem. -Eur. J. 2009, 15, 8709.
      (b) Wang, S. -G. ; Han, L. ; Zeng, M. ; Sun, F. -L. ; Zhang, W. ; You, S. -L. Org. Biomol. Chem. 2012, 10, 3202.

    15. [15]

      Sun, X.-X.; Du, B.-X.; Zhang, H.-H.; Ji, L.; Shi, F. ChemCatChem 2015, 7, 1211.  doi: 10.1002/cctc.201500093

    16. [16]

      (a) Trost, B. M. ; Quancard, J. J. Am. Chem. Soc. 2006, 128, 6314.
      (b) Stephens, D. E. ; Larionov, O. V. Eur. J. Org. Chem. 2014, 3662.
      (c) Ruchti, J. ; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 16756.
      (d) Zhu, Y. ; Rawal, V. H. J. Am. Chem. Soc. 2012, 134, 111.

  • 加载中
    1. [1]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    2. [2]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    3. [3]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    4. [4]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    5. [5]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    6. [6]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    7. [7]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    8. [8]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    9. [9]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    10. [10]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    11. [11]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    12. [12]

      Yifan Liu Haonan Peng . AI-Assisted New Era in Chemistry: A Review of the Application and Development of Artificial Intelligence in Chemistry. University Chemistry, 2025, 40(7): 189-199. doi: 10.12461/PKU.DXHX202405182

    13. [13]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    14. [14]

      Yunchao Li Shanying Chen Ke Qi Kangning Huo Shuxin Li Jingyi Li Ying Wei Louzhen Fan . A New Colloid Electrophoresis Experiment Incorporating Characteristics of Inquiry Learning and Ideological and Political Education. University Chemistry, 2024, 39(2): 47-51. doi: 10.3866/PKU.DXHX202308063

    15. [15]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    16. [16]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    17. [17]

      Yiming Lu Xiang Xie Xiaoqing Qiu Yang Liu Xinyuan Cheng . The New Year’s Eve of the Aviation Brake Material Family. University Chemistry, 2024, 39(9): 203-207. doi: 10.12461/PKU.DXHX202403061

    18. [18]

      Ruiyuan Xu Yuxin Wang Yuru Zhang Wanmei Li . Who Destroyed Snowflake Castle. University Chemistry, 2024, 39(9): 224-228. doi: 10.12461/PKU.DXHX202311056

    19. [19]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    20. [20]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

Metrics
  • PDF Downloads(7)
  • Abstract views(2259)
  • HTML views(1012)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return