Citation: Wang Yuying, Liu Li, Wang Yeming. Advances Research in Synthesis of Aza-heterocyclic Compounds Involving Vinyl Azides[J]. Chinese Journal of Organic Chemistry, ;2018, 38(5): 1009-1028. doi: 10.6023/cjoc201711043 shu

Advances Research in Synthesis of Aza-heterocyclic Compounds Involving Vinyl Azides

Figures(43)

  • Vinyl azides have been extensively studied in organic synthesis since 1910. As a series of important intermediates, vinyl azides have a wide range of applications in recent years, especially in the synthesis of heterocyclic compounds catalyzed by transition-metals. The progress of the construction of aza-heterocyclic compounds in the field of organic synthesis is reviewed.
  • 加载中
    1. [1]

      Forster, M. O.; Newman, S. H. J. Chem. Soc. 1910, 97, 2570.  doi: 10.1039/CT9109702570

    2. [2]

      Hemetsberger, H.; Knittel, D.; Weidmann, H. Monatsh. Chem. 1969, 100, 1599.  doi: 10.1007/BF00900176

    3. [3]

      Zhu, W.; Ma, D.-W. Chem. Commun. 2004, 888.
       

    4. [4]

      Hassner, A.; Levy, L. A. J. Am. Chem. Soc. 1965, 87, 4203.  doi: 10.1021/ja01096a045

    5. [5]

      Harvey, G. R.; Ratts, K. W. J. Org. Chem. 1966, 31, 3907.  doi: 10.1021/jo01350a005

    6. [6]

      Priebe, H. Angew. Chem., Int. Ed. Engl. 1984, 23, 736.  doi: 10.1002/(ISSN)1521-3773

    7. [7]

      Chou, T. S.; Lee, S. J.; Peng, M. L.; Sun D. J.; Chou, S. S. P. J. Org. Chem. 1988, 53, 3027.  doi: 10.1021/jo00248a023

    8. [8]

      Fu, J.-K.; Giuseppe, Z.; Edward, A. A.; Bi, X.-H. Chem. Soc. Rev. 2017, 46, 7208.  doi: 10.1039/C7CS00017K

    9. [9]

      Zhang, L.; Sun, G.; Bi, X.-H. Chem.-Asian J. 2016, 11, 3018.  doi: 10.1002/asia.v11.21

    10. [10]

      Yan, J.; Ji, X.-Y.; Hua, S.-G.; Wang, J. Chin. J. Org. Chem. 2018, 38, 791(in Chinese).
       

    11. [11]

      (a) Neber, P. W. ; Burgard, A. Justus Liebigs Ann. Chem. 1932, 493, 281.
      (b) Neber, P. W. ; Huh, G. Justus Liebigs Ann. Chem. 1935, 515, 283.

    12. [12]

      (a) Würthwein, T. ; Hergenrö ther, T. ; Quast, H. Eur. J. Org. Chem. 2002, 1750.
      (b) Banert, K. ; Meier, B. Angew. Chem., Int. Ed. 2006, 45, 4015.

    13. [13]

      (a) Smolinsky, G. J. Am. Chem. Soc. 1961, 83, 4483.
      (b) Smolinsky, G. J. Org. Chem. 1962, 27, 3557.

    14. [14]

      Alves, M. J.; Bickley, J. F.; Gilchrist, T. L. J. Chem. Soc., Perkin Trans. 1 1999, 1399.

    15. [15]

      Patonay, T.; Jeko, J.; Juhasz-Toth, E. Eur. J. Org. Chem. 2008, 1441.

    16. [16]

      Kumar, R.; Nath, M.; Tyrrell, D. L. J. J. Med. Chem. 2002, 45, 2032.  doi: 10.1021/jm010410d

    17. [17]

      Pinhoe Melo, T. M. V. D.; Lopes, C. S. J.; Cardoso, A. L.; Rocha Gonsalves, A. M. d'A. Tetrahedron 2001, 57, 6203.  doi: 10.1016/S0040-4020(01)00598-1

    18. [18]

      Alonso-Cruz, C. R.; Kennedy, A. R.; Rodríguez, M. S.; Suárez, E. Tetrahedron Lett. 2007, 48, 7207.  doi: 10.1016/j.tetlet.2007.07.190

    19. [19]

      Alonso-Cruz, C. R.; Kennedy, A. R.; Rodríguez, M. S.; Suárez, E. J. Org. Chem. 2008, 73, 4116.  doi: 10.1021/jo800182y

    20. [20]

      Timen, A. S.; Risberg, E.; Somfai, P. Tetrahedron Lett. 2003, 44, 5339.  doi: 10.1016/S0040-4039(03)01205-X

    21. [21]

      Alajarín, M.; Orenes, R.; Vidal, Á.; Pastor, A. Synthesis 2003, 49.

    22. [22]

      Singh, P. N. D.; Carter, C. L.; Gudmundsdóttir, A. D. Tetrahedron Lett. 2003, 44, 6763.  doi: 10.1016/S0040-4039(03)01558-2

    23. [23]

      Furin, G. G.; Gatilov, Y. V.; Bagrynskay, I. Y.; Zhuzhgov, E. L. J. Fluorine Chem. 2001, 110, 21.  doi: 10.1016/S0022-1139(01)00395-5

    24. [24]

      Banert, K.; Kohler, F.; Kowski, K.; Meier, B.; Muller, B.; Rademacher, P. Chem.-Eur. J. 2002, 8, 5089.  doi: 10.1002/1521-3765(20021115)8:22<5089::AID-CHEM5089>3.0.CO;2-F

    25. [25]

      Banert, K.; Fotsing, J. R.; Hagedorn, M.; Reisenauer, H. P.; Maier, G. Tetrahedron 2008, 64, 5645.  doi: 10.1016/j.tet.2008.04.037

    26. [26]

      Banert, K.; Hagedorn, M.; Wutke, J.; Ecorchard, P.; Schaarschmidt, D.; Lang, H. Chem. Commun. 2010, 46, 4058.  doi: 10.1039/c0cc00079e

    27. [27]

      Banert, K.; Kçhler, F.; Melzer, A.; Scharf, I.; Rheinwald, G.; Ruffer, T.; Lang, H.; Herges, R.; He , K.; Ghavtadze, N.; Wurthwein, E.-U. Chem.-Eur. J. 2011, 17, 10071.  doi: 10.1002/chem.v17.36

    28. [28]

      Banert, K.; Meier, B.; Penk, E.; Saha, B.; Wurthwein, E.-U.; Grimme, S.; Ruffer, T.; Schaarschmidt, D.; Lang, H. Chem.-Eur. J. 2011, 17, 1128.  doi: 10.1002/chem.v17.4

    29. [29]

      Banert, K.; Ihle, A.; Kuhtz, A.; Penk, E.; Saha, B.; Würthwein, E.-U. Tetrahedron 2013, 69, 2501.  doi: 10.1016/j.tet.2012.12.054

    30. [30]

      Chen, F.; Shen, T.; Cui, Y.-X.; Jiao, N. Org. Lett. 2012, 14, 4926.  doi: 10.1021/ol302270z

    31. [31]

      Donthiri, R. R.; Samanta, S.; Adimurthy, S. Org. Biomol. Chem. 2015, 13, 10113.  doi: 10.1039/C5OB01407G

    32. [32]

      Chiba, S.; Wang, Y.-F.; Lapointe, G.; Narasaka, K. Org. Lett. 2008, 10, 313.  doi: 10.1021/ol702727j

    33. [33]

      Ng, E. P. J.; Wang, Y.-F.; Hui, B. W.-Q.; Lapointe, G.; Chiba, S. Tetrahedron 2011, 67, 7728.  doi: 10.1016/j.tet.2011.08.006

    34. [34]

      Wang, Y.-F.; Toh, K. K.; Chiba, S.; Narasaka, K. Org. Lett. 2008, 10, 5019.  doi: 10.1021/ol802120u

    35. [35]

      Ng, E. P. J.; Wang, Y.-F.; Chiba, S. Synlett 2011, 783.
       

    36. [36]

      Yu, W.-W.; Chen, W.-T.; Liu, S.; Shao, J.-A.; Shao, Z.-Y.; Lin, H.-L.; Yu, Y.-P. Tetrahedron 2013, 69, 1953.  doi: 10.1016/j.tet.2012.11.041

    37. [37]

      Chen, W.-T.; Shao, J.-A.; Li, Z.; Giulianotti, M. A.; Yu, Y.-P. Can. J. Chem. 2012, 90, 214.  doi: 10.1139/v11-150

    38. [38]

      Wu, Y.-F.; Zhu, L.; Yu, Y.-H.; Luo, X.-S.; Huang, X.-L. J. Org. Chem. 2015, 80, 11407.  doi: 10.1021/acs.joc.5b02057

    39. [39]

      Pawar, S. K.; Sahani, R. L.; Liu, R.-S. Chem.-Eur. J. 2015, 21, 10843.  doi: 10.1002/chem.v21.30

    40. [40]

      Zhu, L.; Yu, Y.-H.; Mao, Z.-F.; Huang, X.-L. Org. Lett. 2015, 17, 30.  doi: 10.1021/ol503172h

    41. [41]

      Cludius-Brandt, S.; Kupracz, L.; Kirschning, A. Beilstein J. Org. Chem. 2013, 9, 1745.  doi: 10.3762/bjoc.9.201

    42. [42]

      Dong, H.-J.; Shen, M.-H.; Redford, J. E.; Stokes, B. J.; Pumphrey, A. L.; Driver, T. G. Org. Lett. 2007, 9, 5191.  doi: 10.1021/ol702262f

    43. [43]

      Farney, E. P.; Yoon, T. P. Angew. Chem., Int. Ed. 2014, 53, 793.  doi: 10.1002/anie.201308820

    44. [44]

      Zhang, L.; Sun, G.; Bi, X.-H. Chem.-Asian J. 2016, 11, 3018.  doi: 10.1002/asia.v11.21

    45. [45]

      Nie, Y.-B.; Wang, L.; Ding, M.-W. J. Org. Chem. 2012, 77, 696.  doi: 10.1021/jo201846w

    46. [46]

      Wang, Y.; Xie, H.; Pan, Y.-R.; Ding, M. W. Synthesis 2014, 336.

    47. [47]

      Liu, S.; Shao, J.-A.; Guo, X.; Luo, J.; Zhao, M.-H.; Zhang, G.-L.; Yu, Y.-P. Tetrahedron 2014, 70, 1418.  doi: 10.1016/j.tet.2014.01.007

    48. [48]

      Luo, J.; Chen, W.-T.; Shao, J.-A.; Liu, X.-Y.; Shu, K.; Tang, P.; Yu, Y.-P. RSC Adv. 2015, 5, 55808.  doi: 10.1039/C5RA07320K

    49. [49]

      Xiang, L.-K.; Niu, Y.-N.; Pang, X.-B.; Yang, X.-D.; Yan, R.-L. Chem. Commun. 2015, 51, 6598.  doi: 10.1039/C5CC01155H

    50. [50]

      Tiwari, D. K.; Maurya, R. A.; Nanubolu, J. B. Chem.-Eur. J. 2016, 22, 526.  doi: 10.1002/chem.201504292

    51. [51]

      Adiyala, P. R.; Borra, S.; Kamal, A.; Maurya, R. A. Eur. J. Org. Chem. 2016, 1269.

    52. [52]

      Zhu, Z.-Z.; Tang, X.-D.; Li, J.-X.; Li, X.-W.; Wu, W.-Q.; Deng, G.-H.; Jiang, H.-F. Org. Lett. 2017, 19, 1370.  doi: 10.1021/acs.orglett.7b00203

    53. [53]

      Hu, J.-T.; Cheng, Y.-F.; Yang, Y.-Q.; Rao, Y. Chem. Commun. 2011, 47, 10133.  doi: 10.1039/c1cc13908h

    54. [54]

      (a) Zou, H. -B. ; Zhu, H. -J. ; Shao, J. -A. ; Wu, J. -W. ; Chen, W. -T. ; Giulianotti, M. A. ; Yu, Y. -P. Tetrahedron 2011, 67, 4887.
      (b) Li, Y. ; Hong, D. ; Lu, P. ; Wang, Y. G. Tetrahedron Lett. 2011, 52, 4161.

    55. [55]

      Zhang, G.-L.; Ni, H.-C.; Chen, W.-T.; Shao, J.-A.; Liu, H.; Chen, B.-H.; Yu, Y.-P. Org. Lett. 2013, 15, 5967.  doi: 10.1021/ol402810f

    56. [56]

      Huang, W.; Liu, S.; Chen, B.-H.; Guo, X.; Yu, Y.-P. RSC Adv. 2015, 5, 32740.  doi: 10.1039/C5RA04371A

    57. [57]

      (a) Wang Y. -F. ; Chiba, S. J. Am. Chem. Soc. 2009, 131, 12570.
      (b) Wang, Y. F. ; Toh, K. K. ; Ng, E. P. J. ; Chiba, S. J. Am. Chem. Soc. 2011, 133, 6411.

    58. [58]

      Sajna, K. V.; Kumara Swamy, K. C. J. Org. Chem. 2012, 77, 8712.  doi: 10.1021/jo301694n

    59. [59]

      Shao, Z.-Y.; Pan, Q.-H.; Chen, J.; Yu, Y.-P.; Zhang, G.-L. Tetrahedron 2012, 68, 6565.  doi: 10.1016/j.tet.2012.05.057

    60. [60]

      Nishimura, Y.; Hidetsura, C. H. Synlett 2015, 233.
       

    61. [61]

      Shao, J.-A.; Liu, X.-Y.; Shu, K.; Tang, P.; Luo, J.; Chen, W.-T.; Yu, Y.-P. Org. Lett. 2015, 17, 4502.  doi: 10.1021/acs.orglett.5b02180

    62. [62]

      Knittel, D. Synthesis 1985, 186.

    63. [63]

      Stokes, B. J.; Dong, H.; Leslie, B. E.; Pum-phrey, A. L.; Driver, T. G. J. Am. Chem. Soc. 2007, 129, 7500.  doi: 10.1021/ja072219k

    64. [64]

      Hong, D.; Chen, Z.-B.; Lin, X.-F.; Wang, Y.-G. Org. Lett. 2010, 12, 4608.  doi: 10.1021/ol101934v

    65. [65]

      Zhu, X.; Wang, Y.-F.; Zhang, F.-L.; Chiba, S. Chem.-Asian J. 2014, 9, 2458.  doi: 10.1002/asia.201402421

    66. [66]

      Wang, Q.-L.; Huang, J.; Zhou, L. Adv. Synth. Catal. 2015, 357, 2479.  doi: 10.1002/adsc.v357.11

    67. [67]

      (a) Yang, Y. Y. ; Shou, W. G. ; Chen, Z. B. ; Hong, D. J. Org. Chem. 2008, 73, 3928.
      (b) Chen, Z. B. ; Hong, D. ; Wang, Y. -G. J. Org. Chem. 2009, 74, 903.

    68. [68]

      Wang, Y.-F.; Toh, K.-K.; Lee, J.-Y.; Chiba, S. Angew. Chem., Int. Ed. 2011, 50, 5927.  doi: 10.1002/anie.v50.26

    69. [69]

      Wang, Y.-F.; Lonca, G. H.; Chiba, S. Angew. Chem., Int. Ed. 2014, 53, 1067.  doi: 10.1002/anie.201307846

    70. [70]

      Liu, K.; Chen, S.; Li, X.-G.; Liu, P.-N. J. Org. Chem. 2016, 81, 265.  doi: 10.1021/acs.joc.5b01995

    71. [71]

      Zhu, Z.-Z.; Tang, X.-D.; Li, X.-W.; Wu, W.-Q.; Deng, G.-H.; Jiang, H.-F. J. Org. Chem. 2016, 81, 1401.  doi: 10.1021/acs.joc.5b02376

    72. [72]

      Wang, Y. F.; Lonca, G. H.; Runigo, M. L.; Chiba, S. Org. Lett. 2014, 16, 4272.  doi: 10.1021/ol501997n

    73. [73]

      Mackay, E. G.; Studer, A. Chem.-Eur. J. 2016, 22, 13455.  doi: 10.1002/chem.201602855

    74. [74]

      Sun, X.-Y.; Yu, S.-Y. Chem. Commun. 2016, 52, 10898.  doi: 10.1039/C6CC05756J

    75. [75]

      Chen, W.-T.; Hu, M.; Wu, J.-W.; Zou, H.-B.; Yu, Y.-P. Org. Lett. 2010, 12, 3863.  doi: 10.1021/ol101538x

    76. [76]

      Donthiri, R. R.; Pappula, V.; Reddy, N. N. K.; Bairagi, D.; Adimurthy, S. J. Org. Chem. 2014, 79, 11277.  doi: 10.1021/jo5021618

    77. [77]

      Adiyala, P. R.; Mani, G. S.; Nanubolu, J. B.; Shekar, K. C.; Maurya, R. A. Org. Lett. 2015, 17, 4308.  doi: 10.1021/acs.orglett.5b02124

    78. [78]

      Dinda, B. K.; Jana, A. K.; Mal, D. Chem. Commun. 2012, 48, 3999.  doi: 10.1039/c2cc30279a

    79. [79]

      Guo, S.-S.; Chen, B.-H.; Guo, X.; Zhang, G.-L.; Yu, Y.-P. Tetrahedron 2015, 71, 9371.  doi: 10.1016/j.tet.2015.08.067

    80. [80]

      Guo, S.-S.; Chen, B.-H.; Zhao, D.-H.; Chen, W.-T.; Zhang, G.-L. Adv. Synth. Catal. 2016, 358, 3010.  doi: 10.1002/adsc.v358.19

    81. [81]

      Xu, H.-D.; Zhou, H.; Pan, Y.-P.; Ren, X.-T.; Wu, H.; Han, M.; Han, R.-Z.; Shen, M.-H. Angew. Chem., Int. Ed. 2016, 55, 2540.  doi: 10.1002/anie.201510096

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    5. [5]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    6. [6]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    7. [7]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    8. [8]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    9. [9]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    10. [10]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    11. [11]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    12. [12]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    13. [13]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    14. [14]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    15. [15]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    16. [16]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    17. [17]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    18. [18]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    19. [19]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    20. [20]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

Metrics
  • PDF Downloads(92)
  • Abstract views(7392)
  • HTML views(2444)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return