Citation: Jiang Youhao, Lu Guolin, Peng Wen. Synthesis of Phenoxyallene-Based Amphiphilic Block Copolymer[J]. Chinese Journal of Organic Chemistry, ;2017, 37(12): 3248-3256. doi: 10.6023/cjoc201710037 shu

Synthesis of Phenoxyallene-Based Amphiphilic Block Copolymer

  • Corresponding author: Peng Wen, 13061677336@163.com
  • Received Date: 31 October 2017
    Revised Date: 9 November 2017
    Available Online: 15 December 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21674124)the National Natural Science Foundation of China 21674124

Figures(9)

  • An amphiphilic triblock copolymer comprising double-bond-containing poly(phenoxyallene) (PPOA) was synthesized by a combination of conventional free radical polymerization and atom transfer radical polymerization (ATRP) via the site transformation strategy. A new bifunctional initiator containing azo and ATRP initiating groups was prepared and used for conventional free radical homopolymerization of phenoxyallene (POA) to afford a PPOA-based macroinitiator bearing ATRP initiating groups. Subsequent ATRP of hydrophilic monomer, 2-((diethylamino)ethyl methacrylate) (DEAEMA), initiated by PPOA-based macroinitiator afforded PDEAEMA-b-PPOA-b-PDEAEMA triblock copolymer. This triblock copolymer can self-assemble into micelles, and critical micelle concentration (cmc) of PDEAEMA-b-PPOA-b-PDEAEMA amphiphilic triblock copolymer in aqueous solution was determined by fluorescence probe technique. The dependence of cmc on pH and ion strength was also investigated.
  • 加载中
    1. [1]

      McGrath, M. P.; Sall, E. D.; Tremont, S. J. Chem. Rev. 1995, 95, 381.  doi: 10.1021/cr00034a004

    2. [2]

      Otsuka, S.; Mori, K.; Imaizumi, F. J. Am. Chem. Soc. 1965, 13, 3017.
       

    3. [3]

      Okuyama, T.; Izawa, K.; Fueno, T. J. Am. Chem. Soc. 1973, 95, 6749.  doi: 10.1021/ja00801a036

    4. [4]

      Yokozawa, T.; Tanaka, M.; Endo, T. Chem. Lett. 1987, 1831.
       

    5. [5]

      Yokozawa, T.; Ito, N.; Endo, T. Chem. Lett. 1988, 1955.
       

    6. [6]

      Ito, N.; Yokozawa, T; Endo, T. Polym. Prepr. Jpn. 1988, 37, 346.

    7. [7]

      Okuyama, T.; Izawa and, K.; Fueno, T. J. Am. Chem. Soc. 1973, 95, 6749.  doi: 10.1021/ja00801a036

    8. [8]

      Takahashi, T.; Yokozawa, T.; Endo, T. J. Polym. Sci., Polym. Chem. 1992, 30, 583.  doi: 10.1002/pola.1992.080300409

    9. [9]

      Takahashi, T.; Yokozawa, T.; Endo, T. Macromolecules 1995, 28, 866.
       

    10. [10]

      Tomita, I.; Kondo, Y.; Takagi, K.; Endo, T. Macromolecules 1994, 27, 4413.  doi: 10.1021/ma00093a052

    11. [11]

      Takagi, K.; Tomita, I.; Endo, T. Macromolecules 1997, 30, 7386.  doi: 10.1021/ma9708959

    12. [12]

      Endo, T.; Takagi, K.; Tomita, I. Tetrahedron 1997, 53, 15187.  doi: 10.1016/S0040-4020(97)00956-3

    13. [13]

      Takagi, K.; Tomita, I.; Endo, T. Macromolecules 1998, 31, 6741.  doi: 10.1021/ma9800921

    14. [14]

      Takagi, K.; Tomita, I.; Nakamura, Y.; Endo, T. Macromolecules 1998, 31, 2779.  doi: 10.1021/ma9717404

    15. [15]

      Taguchi, M.; Tomita, I.; Endo, T. Angew. Chem., Int. Ed. 2000, 39, 3667.  doi: 10.1002/(ISSN)1521-3773

    16. [16]

      Takagi, K.; Tomita, I. Polym. Bull. 2005, 55, 251.  doi: 10.1007/s00289-005-0435-9

    17. [17]

      Kyohei, M.; Tomita, I. Macromolecules 2006, 39, 6336.  doi: 10.1021/ma052374o

    18. [18]

      Mochizuki, K.; Tomita, I. Macromolecules 2006, 39, 7474.  doi: 10.1021/ma052492b

    19. [19]

      Takagi, K.; Tomita, I.; Endo, T. Chem. Commun. 1998, 681.
       

    20. [20]

      Taguchi, M.; Tomita, I.; Endo, T. Macromol. Chem. Phys. 2000, 201, 2322.  doi: 10.1002/(ISSN)1521-3935

    21. [21]

      Taguchi, M.; Tomita, I.; Yoshida, Y.; Endo, T. J. Polym. Sci., Polym. Chem. 1999, 37, 3916.  doi: 10.1002/(ISSN)1099-0518

    22. [22]

      Tomita, I.; Taguchi, M.; Takagi, K.; Endo, T.; J. Polym. Sci., Polym. Chem. 1997, 35, 431.
       

    23. [23]

      Hu, Y. Y.; Su, M.; Ma, C. H.; Yu, Z. P.; Liu, N.; Yin, J.; Ding, Y. S.; Wu, Z. Q. Macromolecules 2015, 48, 5204.  doi: 10.1021/acs.macromol.5b01120

    24. [24]

      Yu, Z. P.; Ma, C. H.; Wang, Q.; Liu, N.; Yin, J.; Wu, Z. Q. Macromolecules 2016, 49, 1180.  doi: 10.1021/acs.macromol.5b02759

    25. [25]

      Zhang, X. H.; Peng, D.; Lu, G. L.; Gu, L. N.; Huang, X. Y. J. Polym. Sci., Polym. Chem. 2006, 44, 6888.  doi: 10.1002/(ISSN)1099-0518

    26. [26]

      Zhang, X. H.; Shen, Z.; Li, L. T.; Zhang, S.; Lu, G. L.; Huang, X. Y. J. Polym. Sci., Polym. Chem. 2007, 45, 5509.  doi: 10.1002/(ISSN)1099-0518

    27. [27]

      Zhang, X. H.; Shen, Z.; Li, L. T.; Lu, G. L.; Gu, L. N.; Huang, X. Y. Polymer 2007, 48, 5507.  doi: 10.1016/j.polymer.2007.07.037

    28. [28]

      Zhang, X. H.; Shen, Z.; Feng, C.; Yang, D.; Li, Y. G.; Hu, J. H.; Lu, G. L.; Huang, X. Y. Macromolecules 2009, 42, 4249.  doi: 10.1021/ma900343z

    29. [29]

      Ding, A. S.; Lu, G. L.; Guo, H.; Zheng, X. L.; Huang, X. Y. J. Polym. Sci., Polym. Chem. 2013, 51, 1091.  doi: 10.1002/pola.26469

    30. [30]

      Harada, A.; Kataoka, K. Macromolecules 1995, 28, 5294.  doi: 10.1021/ma00119a019

    31. [31]

      Meier, W. Chem. Soc. Rev. 2000, 29, 295.  doi: 10.1039/a809106d

    32. [32]

      Kim, S. Y.; Ha, J. C.; Lee, Y. M. J. Controlled Release 2000, 65, 345.  doi: 10.1016/S0168-3659(99)00207-2

    33. [33]

      Hu, X. X.; Dong, Q.; Hao, H. Polym. Mater. Sci. Eng. 2017, 33, 32(in Chinese).
       

    34. [34]

      Han, Y. N.; Liu, S. X.; Mao, H. G.; Tian, Y.; Yu, W. Y. Acta Chim. Sinica 2016, 74, 744(in Chinese).
       

    35. [35]

      Liu, Y.; Zhu, Y. H.; Sun, J. L.; Liu, S. Q.; Men, Y.; Liu, J. Q. China Pharm. 2017, 28, 2274(in Chinese).  doi: 10.6039/j.issn.1001-0408.2017.16.31

    36. [36]

      Moffitt, M.; Eisenberg, A. Macromolecules 1997, 30, 4363.  doi: 10.1021/ma961577x

    37. [37]

      Wei, Y.; Zheng, C.; Mao, T. Y.; Lin, J.; Lin, H. Chemistry 2016, 80, 925(in Chinese).
       

    38. [38]

      He, T. B.; Hu, H. J. New Development of Overseas Macromolecular Science, Chemical Industry Press, Beijing, 1997, p. 39(in Chinese).

    39. [39]

      Wen, B.; Shang, D.; Jin, L. J.; Sun, X. Y.; Hang, J. Z. Acta Polym. Sinica 2017, 6, 990(in Chinese).
       

    40. [40]

      Sun, K.; Chen, F.; Ma, X. Y.; Zhang, J.; Zhang, F.; Guan, X. H. Polym. Mater. Sci. Eng. 2017, 33, 128(in Chinese).
       

    41. [41]

      Wang, J.; Matyjaszewski, K. J. Am. Chem. Soc. 1995, 117, 5614.  doi: 10.1021/ja00125a035

    42. [42]

      Muehlebach, A.; Gaynor, S. G.; Matyjaszewski, K. Macromolecules 1998, 31, 6046.  doi: 10.1021/ma9804747

    43. [43]

      Sedjo, R. A.; Mirous, B. K.; Brittain, W. J. Macromolecules 2000, 33, 1492.  doi: 10.1021/ma991549p

    44. [44]

      Li, Y. J.; Zhang, S.; Liu, H, ; Li, Q. N.; Li, W. X.; Huang, X. Y. J. Polym. Sci., Polym. Chem. 2010, 48, 5419.  doi: 10.1002/pola.v48:23

    45. [45]

      Yan, Y. X.; Yin, T. T.; Liu, D. F.; Liu, N.; Yin, J.; Zhu, Y. Y.; Wu, Z. Q. Acta Polym. Sinica 2015, 3, 319(in Chinese).
       

    46. [46]

      Zhang, K.; Qin, M. L.; Liu, B. H.; Yu, F.; Teng, C. Q.; Yu, M. H. Synth. Fiber China 2017, 46, 22(in Chinese).
       

    47. [47]

      Miller, P. J.; Matyjaszewski, K. Macromolecules 1999, 32, 8760.  doi: 10.1021/ma991077e

    48. [48]

      Kajiwara, A.; Matyjaszewski, K. Macromolecules 1998, 31, 3489.  doi: 10.1021/ma971445j

    49. [49]

      Bielawski, C. W.; Morita, T.; Grubbs, R. H. Macromolecules 2000, 33, 678.  doi: 10.1021/ma990625l

    50. [50]

      Xu, F. J.; Song, Y.; Cheng, Z. P.; Zhu, X. L.; Zhu, C. X.; Kang, E. T.; Neoh, K. G. Macromolecules 2005, 38, 6254.  doi: 10.1021/ma050581i

    51. [51]

      Huang, X. Y.; Lu, G. L.; Peng, D.; Zhang, S.; Qing, F. L. Macromolecules 2005, 38, 7299.  doi: 10.1021/ma0504062

    52. [52]

      Leiston-Belanger, J. M.; Penelle, J.; Russell, T. P. Macromolecules 2006, 39, 1766.  doi: 10.1021/ma0522920

    53. [53]

      Lu, G. L.; Zhang, S.; Huang, X. Y. J. Polym. Sci., Polym. Chem. 2006, 44, 5438.  doi: 10.1002/(ISSN)1099-0518

    54. [54]

      Myers, S. B.; Register, R. A. Macromolecules 2008, 41, 5283.  doi: 10.1021/ma800844g

    55. [55]

      Tong, L.; Shen, Z.; Yang, D.; Chen, S.; Li, Y. J.; Hu, J. H.; Lu, G. L.; Huang, X. Y. Polymer 2009, 50, 2341.  doi: 10.1016/j.polymer.2009.03.041

    56. [56]

      Destarac, M.; Boutevin, B. Makromol. Rapid Commun. 1999, 20, 641.  doi: 10.1002/(ISSN)1521-3927

    57. [57]

      Akiyoshi, K.; Deguchi, S.; Moriguchi, N.; Yamaguchi S.; Sunamoto, J. Macromolecules 1993, 26, 3062.  doi: 10.1021/ma00064a011

    58. [58]

      You, L.; Lu, F.; Li, Z. Zhang, W.; Li, F. Macromolecules 2003, 36, 1.  doi: 10.1021/ma025641o

    59. [59]

      Xu, P. Tang, H.; Li, S.; Ren, J.; Van Kirk, E.; Murdoch, W. J.; Radosz, M.; Shen, Y. Biomacromolecules 2004, 5, 1736.  doi: 10.1021/bm049874u

    60. [60]

      Boerresen, S.; Crandall, J. K. J. Org. Chem. 1976, 41, 678.  doi: 10.1021/jo00866a019

  • 加载中
    1. [1]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    4. [4]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    5. [5]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    6. [6]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    7. [7]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    8. [8]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    9. [9]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    10. [10]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    13. [13]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    14. [14]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    15. [15]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    16. [16]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    17. [17]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    18. [18]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    19. [19]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    20. [20]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

Metrics
  • PDF Downloads(10)
  • Abstract views(2074)
  • HTML views(459)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return