Citation: Fang Lei, Lin Weibin, Shen Yun, Chen Chuanfeng. Applications of Helicenes and Their Derivatives in Asymmetric Catalysis[J]. Chinese Journal of Organic Chemistry, ;2018, 38(3): 541-554. doi: 10.6023/cjoc201710028 shu

Applications of Helicenes and Their Derivatives in Asymmetric Catalysis

  • Corresponding author: Chen Chuanfeng, cchen@iccas.ac.cn
  • Received Date: 24 October 2017
    Revised Date: 16 November 2017
    Available Online: 28 March 2017

    Fund Project: the Strategic Priority Research Program of Chinese Academy of Sciences XDB12010400the National Natural Science Foundation of China 51373180the National Natural Science Foundation of China 21572233Project supported by the National Natural Science Foundation of China (Nos. 21572233, 51373180), and the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB12010400)

Figures(12)

  • Helicenes are a kind of π-conjugated helical compounds which are consisted of ortho-fused benzene or other aromatic rings. Compared to other kinds of chiral catalysts, studies on helicene-based catalysts with helical chirality showed late start and lagging development. However, since helicene molecules exhibit structural rigidity, thermal stability, easily functionalization, and excellent chiral environment for asymmetric catalysis by continuous elaborate curve in three-dimensional space, investigation on the synthesis of helicene-based chiral catalysts and their applications in asymmetric catalysis have attracted increasing interest in recent years. According to the different roles of the helicenes played in the asymmetric catalysis, the helicene-based catalysts can be classified into chiral inducers, helically chiral ligands and helical organocatalysts, and their applications in asymmetric catalysis will be focused on in this review, respectively.
  • 加载中
    1. [1]

      Knowles, W. S.; Sabacky, M. J. Chem. Commun. 1968, 1445-1446.

    2. [2]

      Ding, K.-L.; Fan, Q.-H. Asymmetric Catalysis:New Concepts and Methods, Chemical Industry Press, Beijing, 2009 (in Chinese).

    3. [3]

      Lin, G.-Q.; Sun, X.-W.; Chen, Y.-Q.; Li, Y.-M.; Chan, A. S. C. Chiral Synthesis——Principles and Application of Asymmetric Reaction, Science Press, Beijing, 2013 (in Chinese).

    4. [4]

      Shen, Y.; Chen, C.-F. Chem. Rev. 2012, 112, 1463.  doi: 10.1021/cr200087r

    5. [5]

      Gingras, M. Chem. Soc. Rev. 2013, 42, 1051.  doi: 10.1039/C2CS35134J

    6. [6]

      Ben Hassine, B.; Gorsane, M.; Geerts-Evrard, F.; Pecher, J.; Martin, R. H.; Castelet, D. Bull. Soc. Chim. Belg. 1986, 95, 547.
       

    7. [7]

      Ben Hassine, B.; Gorsane, M.; Pecher, J.; Martin, R. H. Bull. Soc. Chim. Belg. 1987, 96, 801.
       

    8. [8]

      Hassine, B. B.; Gorsane, M.; Pecher, J.; Martin, R. H. Bull. Soc. Chim. Belg. 1985, 94, 759.

    9. [9]

      Benhassine, B.; Gorsane, M.; Pecher, J.; Martin, R. H. Bull. Soc. Chim. Belg. 1986, 95, 557.
       

    10. [10]

      Ben Hassine, B.; Gorsane, M.; Pecher, J.; Martin, R. H. Bull. Soc. Chim. Belg. 1985, 94, 597.
       

    11. [11]

      Reetz, M. T.; Beuttenmüller, E. W.; Goddard, R. Tetrahedron Lett. 1997, 38, 3211.  doi: 10.1016/S0040-4039(97)00562-5

    12. [12]

      Sato, I.; Urabe, H.; Ishiguro, S.; Shibata, T.; Soai, K. Angew. Chem. 2003, 115, 329.  doi: 10.1002/ange.200390073

    13. [13]

      Soai, K.; Shibata, T.; Morioka, H.; Choji, K. Nature 1995, 378, 767.  doi: 10.1038/378767a0

    14. [14]

      Sato, I.; Sugie, R.; Matsueda, Y.; Furumura, Y.; Soai, K. Angew. Chem., Int. Ed. 2004, 43, 4490.  doi: 10.1002/(ISSN)1521-3773

    15. [15]

      Kawasaki, T.; Matsumura, Y.; Tsutsumi, T.; Suzuki, K.; Ito, M.; Soai, K. Science 2009, 324, 492.  doi: 10.1126/science.1170322

    16. [16]

      Shindo, H.; Shirota, Y.; Niki, K.; Kawasaki, T.; Suzuki, K.; Araki, Y.; Matsumoto, A.; Soai, K. Angew. Chem., Int. Ed. 2013, 52, 9135.  doi: 10.1002/anie.201304284

    17. [17]

      Soai, K.; Sato, I.; Shibata, T. Chem. Rec. 2001, 1, 321.  doi: 10.1002/(ISSN)1528-0691

    18. [18]

      Kawasaki, T.; Suzuki, K.; Licandro, E.; Bossi, A.; Maiorana, S.; Soai, K. Tetrahedron:Asymmetry 2006, 17, 2050.  doi: 10.1016/j.tetasy.2006.07.015

    19. [19]

      Sato, I.; Yamashima, R.; Kadowaki, K.; Yamamoto, J.; Shibata, T.; Soai, K. Angew. Chem., Int. Ed. 2001, 40, 1096.  doi: 10.1002/(ISSN)1521-3773

    20. [20]

      Matsumoto, A.; Yonemitsu, K.; Ozaki, H.; Misek, J.; Stary, I.; Stara, I. G.; Soai, K. Org. Biomol. Chem. 2017, 15, 1321.  doi: 10.1039/C6OB02745H

    21. [21]

      Reetz, M. T.; Sostmann, S. J. Organomet. Chem. 2000, 603, 105.  doi: 10.1016/S0022-328X(00)00173-X

    22. [22]

      Monteforte, M.; Cauteruccio, S.; Maiorana, S.; Benincori, T.; Forni, A.; Raimondi, L.; Graiff, C.; Tiripicchio, A.; Stephenson, G. R.; Licandro, E. Eur. J. Org. Chem. 2011, 5649.
       

    23. [23]

      Yamamoto, K.; Shimizu, T.; Igawa, K.; Tomooka, K.; Hirai, G.; Suemune, H.; Usui, K. Sci. Rep. 2016, 6, 36211.  doi: 10.1038/srep36211

    24. [24]

      Nakano, D.; Hirano, R.; Yamaguchi, M.; Kabuto, C. Tetrahedron Lett. 2003, 44, 3683.  doi: 10.1016/S0040-4039(03)00667-1

    25. [25]

      Nakano, D.; Yamaguchi, M. Tetrahedron Lett. 2003, 44, 4969.  doi: 10.1016/S0040-4039(03)01183-3

    26. [26]

      Sehnal, P.; Krausová, Z.; Tepl , F.; Stará, I. G.; Star , I.; Rulíšek, L.; Šaman, D.; Císařová, I. J. Org. Chem. 2008, 73, 2074.  doi: 10.1021/jo701997p

    27. [27]

      Krausová, Z.; Sehnal, P.; Bondzic, B. P.; Chercheja, S.; Eilbracht, P.; Stará, I. G.; Šaman, D.; Star , I. Eur. J. Org. Chem. 2011, 3849.

    28. [28]

      Tsujihara, T.; Inada-Nozaki, N.; Takehara, T.; Zhou, D.-Y.; Suzuki, T.; Kawano, T. Eur. J. Org. Chem. 2016, 4948.
       

    29. [29]

      Yavari, K.; Moussa, S.; Ben Hassine, B.; Retailleau, P.; Voituriez, A.; Marinetti, A. Angew. Chem., Int. Ed. 2012, 51, 6748.  doi: 10.1002/anie.201202024

    30. [30]

      Yavari, K.; Retailleau, P.; Voituriez, A.; Marinetti, A. Chem.-Eur. J. 2013, 19, 9939.  doi: 10.1002/chem.201300844

    31. [31]

      Aillard, P.; Retailleau, P.; Voituriez, A.; Marinetti, A. Chem. Commun. 2014, 50, 2199.  doi: 10.1039/c3cc48943d

    32. [32]

      Yavari, K.; Aillard, P.; Zhang, Y.; Nuter, F.; Retailleau, P.; Voituriez, A.; Marinetti, A. Angew. Chem., Int. Ed. 2014, 53, 861.  doi: 10.1002/anie.201308377

    33. [33]

      Aillard, P.; Voituriez, A.; Dova, D.; Cauteruccio, S.; Licandro, E.; Marinetti, A. Chem.-Eur. J. 2014, 20, 12373.  doi: 10.1002/chem.v20.39

    34. [34]

      Aillard, P.; Retailleau, P.; Voituriez, A.; Marinetti, A. Chem.-Eur. J. 2015, 21, 11989.  doi: 10.1002/chem.v21.34

    35. [35]

      Aillard, P.; Dova, D.; Magne, V.; Retailleau, P.; Cauteruccio, S.; Licandro, E.; Voituriez, A.; Marinetti, A. Chem. Commun. 2016, 52, 10984.  doi: 10.1039/C6CC04765C

    36. [36]

      Dreher, S. D.; Thomas, J.; Katz, T. J.; Lam, K. C.; Rheingold, A. L. J. Org. Chem. 2000, 65, 815.  doi: 10.1021/jo991498u

    37. [37]

      Okubo, H.; Yamaguchi, M.; Kabuto, C. J. Org. Chem. 1998, 63, 9500.  doi: 10.1021/jo981720f

    38. [38]

      Takenaka, N.; Sarangthem, R. S.; Captain, B. Angew. Chem., Int. Ed. 2008, 47, 9708.  doi: 10.1002/anie.v47:50

    39. [39]

      Chen, J.; Captain, B.; Takenaka, N. Org. Lett. 2011, 13, 1654.  doi: 10.1021/ol200102c

    40. [40]

      Takenaka, N.; Chen, J.; Captain, B.; Sarangthem, R. S.; Chandrakumar, A. J. Am. Chem. Soc. 2010, 132, 4536.  doi: 10.1021/ja100539c

    41. [41]

      Narcis, M. J.; Sprague, D. J.; Captain, B.; Takenaka, N. Org. Biomol. Chem. 2012, 10, 9134.  doi: 10.1039/c2ob26674a

    42. [42]

      Misek, J.; Teply, F.; Stara, I. G.; Tichy, M.; Saman, D.; Cisarova, I.; Vojtisek, P.; Stary, I. Angew. Chem., Int. Ed. 2008, 47, 3188.  doi: 10.1002/(ISSN)1521-3773

    43. [43]

      Samal, M.; Misek, J.; Stara, I. G.; Stary, I. Collect. Czech. Chem. Commun. 2009, 74, 1151.  doi: 10.1135/cccc2009067

    44. [44]

      Crittall, M. R.; Rzepa, H. S.; Carbery, D. R. Org. Lett. 2011, 13, 1250.  doi: 10.1021/ol2001705

    45. [45]

      Cauteruccio, S.; Dova, D.; Benaglia, M.; Genoni, A.; Orlandi, M.; Licandro, E. Eur. J. Org. Chem. 2014, 2694.
       

    46. [46]

      Gicquel, M.; Zhang, Y.; Aillard, P.; Retailleau, P.; Voituriez, A.; Marinetti, A. Angew. Chem., Int. Ed. 2015, 54, 5470.  doi: 10.1002/anie.201500299

  • 加载中
    1. [1]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    2. [2]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    3. [3]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    4. [4]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    5. [5]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    6. [6]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    7. [7]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    8. [8]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    9. [9]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    10. [10]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    11. [11]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    12. [12]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    13. [13]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    14. [14]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    15. [15]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    16. [16]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    17. [17]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    18. [18]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    19. [19]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    20. [20]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

Metrics
  • PDF Downloads(170)
  • Abstract views(6587)
  • HTML views(2560)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return