Citation: Wang Qing, Gao Kecheng, Zou Jianping, Zeng Runsheng. Copper(I)-Catalyzed Non-terminal Enamides Trifluoromethylation: Flexible Synthesis of N-(3, 3, 3-Trifluoro-2-arylprop-1-en-1-yl) Substituted Benzamide[J]. Chinese Journal of Organic Chemistry, ;2018, 38(4): 863-870. doi: 10.6023/cjoc201710025 shu

Copper(I)-Catalyzed Non-terminal Enamides Trifluoromethylation: Flexible Synthesis of N-(3, 3, 3-Trifluoro-2-arylprop-1-en-1-yl) Substituted Benzamide

  • Corresponding author: Zeng Runsheng, zengrunsheng@suda.edu.cn
  • Received Date: 22 October 2017
    Revised Date: 28 November 2017
    Available Online: 8 April 2017

    Fund Project: the National Natural Science Foundation of China 21472133the Prospective Study Program of Jiangsu Province BY2015039-08Project supported by the Prospective Study Program of Jiangsu Province (No. BY2015039-08), the National Natural Science Foundation of China (No. 21472133) and the Priority Academic Program Development of Jiangsu Higher Education Institutions

Figures(3)

  • A novel CuI-catalyzed trifluoromethylation of non-terminal enamides was investigated. N-Arylvinyl-substituted benzamide reacted with Togni reagent in dichloroethylane to afford N-(3, 3, 3-trifluoro-2-arylprop-1-en-1-yl) substituted benzamide. The reaction proceeded at 90℃ in air atmosphere in the presence of base and ligands. Control experiment shows that the Togni reagent firstly released CF3 radical in the presence of copper(I) salts and CF3 radical selectively added to the carbon-carbon double bond of β-position of enamides.
  • 加载中
    1. [1]

      (a) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, Wiley-Blackwell, Chichester, 2009.
      (b) Shimizu, M. ; Hiyama, T. Angew. Chem., Int. Ed. 2005, 44, 214.
      (c) Schlosser, M. Angew. Chem., Int. Ed. 2006, 45, 5432.
      (d) Müller, K. ; Faeh, C. ; Diederich, F. Science 2007, 317, 1881.
      (e) Purser, S. ; Moore, P. R. ; Swallow, S. ; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
      (f) Wang, J. ; Sánchez-Roselló, M. ; Aceña, J. L. ; del Pozo, C. ; Sorochinsky, A. E. ; Fustero, S. ; Soloshonok, V. A. ; Liu, H. Chem. Rev. 2014, 114, 2432.

    2. [2]

      (a) Rano, T. A. ; Kuo, G. -H. Org. Lett. 2009, 11, 2812.
      (b) Kawai, H. ; Okusu, S. ; Tokunaga, E. ; Sato, H. ; Shiro, M. ; Shibata, N. Angew. Chem., Int. Ed. 2012, 51, 4959.
      (c) Kawai, H. ; Yuan, Z. ; Kitayama, T. ; Tokunaga, E. ; Shibata, N. Angew. Chem., Int. Ed. 2013, 52, 5575.

    3. [3]

      (a) Sani, M. ; Bruché, L. ; Chiva, G. ; Fustero, S. ; Piera, J. ; Volonterio, A. ; Zanda, M. Angew. Chem., Int. Ed. 2003, 42, 2060.
      (b) Ogu, K. ; Matsumoto, S. ; Akazome, M. ; Ogura, K. Org. Lett. 2005, 7, 589.
      (c) Jakowiecki, J. ; Loska, R. ; Makosza, M. J. Org. Chem. 2008, 73, 5436.
      (d) Fustero, S. ; Chiva, G. ; Piera, J. ; Sanz-Cervera, J. F. ; Volonterio, A. ; Zanda, M. ; Ramirez de Arellano, C. J. Org. Chem. 2009, 74, 3122.
      (e) Benhaim, C. ; Bouchard, L. ; Pelletier, G. ; Sellstedt, J. ; Kristofova, L. ; Daigneault, S. Org. Lett. 2010, 12, 2008.

    4. [4]

      (a) Studer, A. Angew. Chem., Int. Ed. 2012, 51, 8950.
      (b) Wang, S. -M. ; Han, J. -B. ; Zhang, C. -P. ; Qin, H. -L. ; Xiao, J. -C. Tetrahedron 2015, 71, 7949.
      (c) Pan, X. ; Xia, H. ; Wu, J. Org. Chem. Front. 2016, 3, 1163.
      (d) Lefebvre, Q. Synlett 2016, 28, 19.

    5. [5]

      For selected examples on transition-metal-catalyzed trifluoromethylation reactions, see: (a) Zhang, C. -P. ; Wang, Z. -L. ; Chen, Q. -Y. ; Zhang, C. -T. ; Gu, Y. -C. ; Xiao, J. -C. Angew. Chem., Int. Ed. 2011, 50, 1896.
      (b) Wang, X. ; Ye, Y. ; Zhang, S. ; Feng, J. ; Xu, Y. ; Zhang, Y. ; Wang, J. J. Am. Chem. Soc. 2011, 133, 16410.
      (c) Liu, T. ; Shao, X. ; Wu, Y. ; Shen, Q. Angew. Chem., Int. Ed. 2012, 51, 540.
      (d) Egami, H. ; Shimizu, R. ; Kawamura, S. ; Sodeoka, M. Angew. Chem., Int. Ed. 2013, 52, 4000.
      (e) Zhang, B. ; Mück-Lichtenfeld, C. ; Daniliuc, C. G. ; Studer, A. Angew. Chem., Int. Ed. 2013, 52, 10792.
      (f) Yang, F. ; Klumphu, P. ; Liang, Y. -M. ; Lipshutz, B. H. Chem. Commun. 2014, 50, 936.
      (g) Zhu, Z. -Z. ; Chen, K. ; Yu, L. -Z. ; Tang, X. -Y. ; Shi, M. Org. Lett. 2015, 17, 5994.
      (h) Yu, L. -Z. ; Xu, Q. ; Tang, X. -Y. ; Shi, M. ACS Catal. 2016, 6, 526.
      (i) Yu, L. -Z. ; Wei, Y. ; Shi, M. Chem. Commun. 2016, 52, 13163.
      (j) Lin, J. -S. ; Dong, X. -Y. ; Li, T. -T. ; Jiang, N. -C. ; Tan, B. ; Liu, X. -Y. J. Am. Chem. Soc. 2016, 138, 9357.

    6. [6]

      (a) Feng, C. ; Loh, T. -P. Chem. Sci. 2012, 3, 3458.
      (b) Yu, Y. -Y. ; Ranade, A. R. ; Georg, G. I. Adv. Synth. Catal. 2014, 356, 3510.
      (c) Wang, H. ; Cheng, Y. ; Yu, S. Sci. China: Chem. 2016, 59, 195.
      (d) Gou, B. -Q. ; Yang, C. ; Zhang, L. ; Xia, W. -J. Acta Chim. Sinica 2017, 75, 66.
      (e) Rey-Rodriguez, R. ; Retailleau, P. ; Bonnet, P. ; Gillaizeau, I. Chem. -Eur. J. 2015, 21, 3572.
      (f) Yu, P. ; Zheng, S. -C. ; Yang, N. -Y. ; Tan, B. ; Liu, X. -Y. Angew. Chem., Int. Ed. 2015, 54, 4041.
      (g) Jiang, H. -F. ; Huang, W. ; Yu, Y. ; Yi, S. -J. ; Li, J. -W; Wu, W. -Q. Chem. Commun. 2017, 53, 7473.

    7. [7]

      (a) Cao, X. -H. ; Pan X. -Q. ; Zhou, P. -J. ; Zou, J. -P. ; Asekun, O. T. Chem. Commun. 2014, 50, 3359.
      (b) Zhang, P. -Z. ; Li, C. -K. ; Zhang, G. -Y. ; Zhang, L. ; Jiang, Y. -J. ; Zou, J. -P. Tetrahedron 2016, 72, 3250.

    8. [8]

      Cheung, C. W.; Buchwald, S. L. J. Org. Chem. 2012, 77, 7526.  doi: 10.1021/jo301332s

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Wenruo NIHongpeng LIYun ZHANGYiran TIANJiehui RUIYingcheng TONGXiaolin PIZhenyan TANG . Research progress of ruthenium alloy catalysts in hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 23-44. doi: 10.11862/CJIC.20250188

    3. [3]

      Jiayi Yang Jianxiu Hao Huacong Zhou Quansheng Liu . “Gorgeous Transformation” of Carbon Dioxide into Cyclic Carbonates: Catalyst Types and Roles. University Chemistry, 2026, 41(2): 178-189. doi: 10.12461/PKU.DXHX202502105

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    6. [6]

      Chenyang WANGYiyan BAIWei ZHANGZhaorong LIUYuchun WANG . Performance of photo-assisted copper oxide catalyzed hydrolysis of ammonia borane to produce hydrogen. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 97-110. doi: 10.11862/CJIC.20250116

    7. [7]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    8. [8]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    9. [9]

      Mei-Xia Yang Zhen-Hong He Long-Rui Wang You-Xing Yang . Route for Turning Waste CH4 and CO2 into Valuable Products: Reforming for Syngas. University Chemistry, 2026, 41(2): 197-207. doi: 10.12461/PKU.DXHX202503012

    10. [10]

      Xiaofei ZhangShanhao XuZhiyuan WangLong HeTiangcheng HuangYongming XuYucui BianYike LiHaijun ChenZhongjun Li . Surface doping of graphene into BiOCl for efficient photocatalytic amine coupling under visible light. Acta Physico-Chimica Sinica, 2026, 42(5): 100202-0. doi: 10.1016/j.actphy.2025.100202

    11. [11]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    12. [12]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    13. [13]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    14. [14]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    15. [15]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    16. [16]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    17. [17]

      Wenwen Ma Lian Kong Jinyang Chu Li Ma Ziqing Ma Heyu Cheng Xinyuan Li Zhan Yu Zhen Zhao . Digitalization-Driven Olefin Production: Digital Design of Catalysts for CO2-Assisted Oxidation Dehydrogenation of Ethane to Ethylene. University Chemistry, 2026, 41(1): 363-372. doi: 10.12461/PKU.DXHX202506055

    18. [18]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    19. [19]

      Aoran LIURui LIZongyao WANGPenghui SHANGJiawei WANDan WANG . Hollow multi-shelled structure materials for catalytic applications. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2039-2053. doi: 10.11862/CJIC.20250036

    20. [20]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

Metrics
  • PDF Downloads(11)
  • Abstract views(1399)
  • HTML views(366)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return