Citation: Wang Qing, Gao Kecheng, Zou Jianping, Zeng Runsheng. Copper(I)-Catalyzed Non-terminal Enamides Trifluoromethylation: Flexible Synthesis of N-(3, 3, 3-Trifluoro-2-arylprop-1-en-1-yl) Substituted Benzamide[J]. Chinese Journal of Organic Chemistry, ;2018, 38(4): 863-870. doi: 10.6023/cjoc201710025 shu

Copper(I)-Catalyzed Non-terminal Enamides Trifluoromethylation: Flexible Synthesis of N-(3, 3, 3-Trifluoro-2-arylprop-1-en-1-yl) Substituted Benzamide

  • Corresponding author: Zeng Runsheng, zengrunsheng@suda.edu.cn
  • Received Date: 22 October 2017
    Revised Date: 28 November 2017
    Available Online: 8 April 2017

    Fund Project: the National Natural Science Foundation of China 21472133the Prospective Study Program of Jiangsu Province BY2015039-08Project supported by the Prospective Study Program of Jiangsu Province (No. BY2015039-08), the National Natural Science Foundation of China (No. 21472133) and the Priority Academic Program Development of Jiangsu Higher Education Institutions

Figures(3)

  • A novel CuI-catalyzed trifluoromethylation of non-terminal enamides was investigated. N-Arylvinyl-substituted benzamide reacted with Togni reagent in dichloroethylane to afford N-(3, 3, 3-trifluoro-2-arylprop-1-en-1-yl) substituted benzamide. The reaction proceeded at 90℃ in air atmosphere in the presence of base and ligands. Control experiment shows that the Togni reagent firstly released CF3 radical in the presence of copper(I) salts and CF3 radical selectively added to the carbon-carbon double bond of β-position of enamides.
  • 加载中
    1. [1]

      (a) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, Wiley-Blackwell, Chichester, 2009.
      (b) Shimizu, M. ; Hiyama, T. Angew. Chem., Int. Ed. 2005, 44, 214.
      (c) Schlosser, M. Angew. Chem., Int. Ed. 2006, 45, 5432.
      (d) Müller, K. ; Faeh, C. ; Diederich, F. Science 2007, 317, 1881.
      (e) Purser, S. ; Moore, P. R. ; Swallow, S. ; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
      (f) Wang, J. ; Sánchez-Roselló, M. ; Aceña, J. L. ; del Pozo, C. ; Sorochinsky, A. E. ; Fustero, S. ; Soloshonok, V. A. ; Liu, H. Chem. Rev. 2014, 114, 2432.

    2. [2]

      (a) Rano, T. A. ; Kuo, G. -H. Org. Lett. 2009, 11, 2812.
      (b) Kawai, H. ; Okusu, S. ; Tokunaga, E. ; Sato, H. ; Shiro, M. ; Shibata, N. Angew. Chem., Int. Ed. 2012, 51, 4959.
      (c) Kawai, H. ; Yuan, Z. ; Kitayama, T. ; Tokunaga, E. ; Shibata, N. Angew. Chem., Int. Ed. 2013, 52, 5575.

    3. [3]

      (a) Sani, M. ; Bruché, L. ; Chiva, G. ; Fustero, S. ; Piera, J. ; Volonterio, A. ; Zanda, M. Angew. Chem., Int. Ed. 2003, 42, 2060.
      (b) Ogu, K. ; Matsumoto, S. ; Akazome, M. ; Ogura, K. Org. Lett. 2005, 7, 589.
      (c) Jakowiecki, J. ; Loska, R. ; Makosza, M. J. Org. Chem. 2008, 73, 5436.
      (d) Fustero, S. ; Chiva, G. ; Piera, J. ; Sanz-Cervera, J. F. ; Volonterio, A. ; Zanda, M. ; Ramirez de Arellano, C. J. Org. Chem. 2009, 74, 3122.
      (e) Benhaim, C. ; Bouchard, L. ; Pelletier, G. ; Sellstedt, J. ; Kristofova, L. ; Daigneault, S. Org. Lett. 2010, 12, 2008.

    4. [4]

      (a) Studer, A. Angew. Chem., Int. Ed. 2012, 51, 8950.
      (b) Wang, S. -M. ; Han, J. -B. ; Zhang, C. -P. ; Qin, H. -L. ; Xiao, J. -C. Tetrahedron 2015, 71, 7949.
      (c) Pan, X. ; Xia, H. ; Wu, J. Org. Chem. Front. 2016, 3, 1163.
      (d) Lefebvre, Q. Synlett 2016, 28, 19.

    5. [5]

      For selected examples on transition-metal-catalyzed trifluoromethylation reactions, see: (a) Zhang, C. -P. ; Wang, Z. -L. ; Chen, Q. -Y. ; Zhang, C. -T. ; Gu, Y. -C. ; Xiao, J. -C. Angew. Chem., Int. Ed. 2011, 50, 1896.
      (b) Wang, X. ; Ye, Y. ; Zhang, S. ; Feng, J. ; Xu, Y. ; Zhang, Y. ; Wang, J. J. Am. Chem. Soc. 2011, 133, 16410.
      (c) Liu, T. ; Shao, X. ; Wu, Y. ; Shen, Q. Angew. Chem., Int. Ed. 2012, 51, 540.
      (d) Egami, H. ; Shimizu, R. ; Kawamura, S. ; Sodeoka, M. Angew. Chem., Int. Ed. 2013, 52, 4000.
      (e) Zhang, B. ; Mück-Lichtenfeld, C. ; Daniliuc, C. G. ; Studer, A. Angew. Chem., Int. Ed. 2013, 52, 10792.
      (f) Yang, F. ; Klumphu, P. ; Liang, Y. -M. ; Lipshutz, B. H. Chem. Commun. 2014, 50, 936.
      (g) Zhu, Z. -Z. ; Chen, K. ; Yu, L. -Z. ; Tang, X. -Y. ; Shi, M. Org. Lett. 2015, 17, 5994.
      (h) Yu, L. -Z. ; Xu, Q. ; Tang, X. -Y. ; Shi, M. ACS Catal. 2016, 6, 526.
      (i) Yu, L. -Z. ; Wei, Y. ; Shi, M. Chem. Commun. 2016, 52, 13163.
      (j) Lin, J. -S. ; Dong, X. -Y. ; Li, T. -T. ; Jiang, N. -C. ; Tan, B. ; Liu, X. -Y. J. Am. Chem. Soc. 2016, 138, 9357.

    6. [6]

      (a) Feng, C. ; Loh, T. -P. Chem. Sci. 2012, 3, 3458.
      (b) Yu, Y. -Y. ; Ranade, A. R. ; Georg, G. I. Adv. Synth. Catal. 2014, 356, 3510.
      (c) Wang, H. ; Cheng, Y. ; Yu, S. Sci. China: Chem. 2016, 59, 195.
      (d) Gou, B. -Q. ; Yang, C. ; Zhang, L. ; Xia, W. -J. Acta Chim. Sinica 2017, 75, 66.
      (e) Rey-Rodriguez, R. ; Retailleau, P. ; Bonnet, P. ; Gillaizeau, I. Chem. -Eur. J. 2015, 21, 3572.
      (f) Yu, P. ; Zheng, S. -C. ; Yang, N. -Y. ; Tan, B. ; Liu, X. -Y. Angew. Chem., Int. Ed. 2015, 54, 4041.
      (g) Jiang, H. -F. ; Huang, W. ; Yu, Y. ; Yi, S. -J. ; Li, J. -W; Wu, W. -Q. Chem. Commun. 2017, 53, 7473.

    7. [7]

      (a) Cao, X. -H. ; Pan X. -Q. ; Zhou, P. -J. ; Zou, J. -P. ; Asekun, O. T. Chem. Commun. 2014, 50, 3359.
      (b) Zhang, P. -Z. ; Li, C. -K. ; Zhang, G. -Y. ; Zhang, L. ; Jiang, Y. -J. ; Zou, J. -P. Tetrahedron 2016, 72, 3250.

    8. [8]

      Cheung, C. W.; Buchwald, S. L. J. Org. Chem. 2012, 77, 7526.  doi: 10.1021/jo301332s

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    4. [4]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    5. [5]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    6. [6]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    7. [7]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    8. [8]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    10. [10]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    14. [14]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    15. [15]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    16. [16]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    17. [17]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    18. [18]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(8)
  • Abstract views(808)
  • HTML views(133)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return