Citation: Zhu Lili, Zhang Hui, Wang Chunjie, Chen Zili. Recent Progress in the Synthesis of N2-Substituted 1, 2, 3-Triazoles[J]. Chinese Journal of Organic Chemistry, ;2018, 38(5): 1052-1064. doi: 10.6023/cjoc201710018 shu

Recent Progress in the Synthesis of N2-Substituted 1, 2, 3-Triazoles

  • Corresponding author: Zhu Lili, lily77cq@163.com Chen Zili, zilichen@ruc.edu.cn
  • Received Date: 16 December 2017
    Revised Date: 20 December 2017
    Available Online: 10 May 2018

    Fund Project: the Doctoral Scientific Research Foundation of Zhoukou Normal University ZKNUB2013001the Science and Technology Research Program of Henan Province 162300410197Project supported by the National Natural Science Foundation of China (No. 21472237), the Science and Technology Research Program of Henan Province (No. 162300410197), the Scientific Research Innovation Foundation of Zhoukou Normal University (No. ZKNUA201701) and the Doctoral Scientific Research Foundation of Zhoukou Normal University (No. ZKNUB2013001)the Scientific Research Innovation Foundation of Zhoukou Normal University ZKNUA201701the National Natural Science Foundation of China 21472237

Figures(26)

  • N-Substituted 1, 2, 3-triazole is an important structural unit in organic chemistry, and has widely utilized in organic synthesis, medicinal chemistry and material science. The chemistry of N1-substituted 1, 2, 3-triazoles has attracted much attention from organic chemists, while the synthesis and application of their N2-isomers have been far less explored. The recent progress on the research field of N2-alkyl, allyl, propargyl, vinyl, aryl substituted 1, 2, 3-triazoles since year 2000 is summarized, including some research of our group. The content is classified by different synthetic methods, such as selective functionalization of 1, 2, 3-triazoles and oxidative cyclization of bisarylhydrazones or azobenzenes.
  • 加载中
    1. [1]

    2. [2]

      (a) Huisgen, R. Angew. Chem., Int. Ed. 1963, 2, 565.
      (b) Huisgen, R. 1, 3-Dipolar Cycloaddition Chemistry, Ed. : Padwa, A., Wiley, New York, 1984, pp. 1~176.

    3. [3]

      (a) Kolb, H. C. ; Finn, M. G. ; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004.
      (b) Rostovtsev, V. V. ; Green, L. G. ; Fokin, V. V. ; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596.
      (c) Zhang, L. ; Chen, X. ; Xue, P. ; Sun, H. H. Y. ; Williams, I. D. ; Sharpless, K. B. ; Fokin, V. V. ; Jia, G. J. Am. Chem. Soc. 2005, 127, 15998.
      (d) Rasmussen, L. K. ; Boren, B. C. ; Fokin, V. V. Org. Lett. 2007, 9, 5337.

    4. [4]

    5. [5]

    6. [6]

      (a) Mangion, I. K. ; Sherry, B. D. ; Yin, J. ; Fleitz, F. J. Org. Lett. 2012, 14, 3458.
      (b) Adibekian, A. ; Martin, B. R. ; Wang, C. ; Hsu, K. -L. ; Bachovchin, D. A. ; Niessen, S. ; Hoover, H. ; Cravatt, B. F. Nat. Chem. Biol. 2011, 7, 469.
      (c) Cox, C. D. ; Breslin, M. J. ; Whitman, D. B. ; Schreier, J. D. ; McGaughey, G. B. ; Bogusky, M. J. ; Roecker, A. J. ; Mercer, S. P. ; Bednar, R. A. ; Lemaire, W. ; Bruno, J. G. ; Reiss, D. R. ; Harrell, C. M. ; Murphy, K. L. ; Garson, S. L. ; Doran, S. M. ; Prueksaritanont, T. ; Anderson, W. B. ; Tang, C. ; Roller, S. ; Cabalu, T. D. ; Cui, D. ; Hartman, G. D. ; Young, S. D. ; Koblan, K. S. ; Winrow, C. J. ; Renger, J. J. ; Coleman, P. J. J. Med. Chem. 2010, 53, 5320.
      (d) Baxter, C. A. ; Cleator, E. ; Brands, K. M. J. ; Edwards, J. S. ; Reamer, R. A. ; Sheen, F. J. ; Stewart, G. W. ; Strotman, N. A. ; Wallace, D. Org. Process Res. Dev. 2011, 15, 367.

    7. [7]

      Chen, Y.; Liu, Y.; Petersena, J. L.; Shi, X. Chem. Commun. 2008, 3254.

    8. [8]

      Kalisiak, J.; Sharpless, K. B.; Fokin, V. V. Org. Lett. 2008, 10, 3171.  doi: 10.1021/ol8006748

    9. [9]

      Wang, X.-J.; Sidhu, K.; Zhang, L.; Campbell, S.; Haddad, N.; Reeves, D. C.; Krishnamurthy, D.; Senanayake, C. H. Org. Lett. 2009, 11, 5490.  doi: 10.1021/ol902334x

    10. [10]

      Wang, X.-J.; Zhang, L.; Krishnamurthy, D.; Senanayake, C. H.; Wipf, P. Org. Lett. 2010, 12, 4632.  doi: 10.1021/ol101965a

    11. [11]

      Yan, W.; Liao, T.; Tuguldur, O.; Zhong, C.; Petersen, J. L.; Shi, X. Chem.-Asian J. 2011, 6, 2720.  doi: 10.1002/asia.v6.10

    12. [12]

      Girish, Y. R.; Kumar, K. S. S.; Muddegowda, U.; Lokanath, N. K.; Rangappa, K. S.; Shashikanth, S. RSC Adv. 2014, 4, 55800.  doi: 10.1039/C4RA09970B

    13. [13]

      Shi, J.; Zhu, L.; Wen, J.; Chen, Z. Chin. J. Catal. 2016, 37, 1222.  doi: 10.1016/S1872-2067(15)61107-X

    14. [14]

      Jiang, Y.; Wang, Q.; Sun, R.; Tang, X.-Y.; Shi, M. Org. Chem. Front. 2016, 3, 744.  doi: 10.1039/C6QO00102E

    15. [15]

      Denmark, S. E.; Kuester, W. E.; Burk, M. T. Angew. Chem., Int. Ed. 2012, 51, 10938.  doi: 10.1002/anie.201204347

    16. [16]

      Zhu, L.-L.; Xu, X.-Q.; Shi, J.-W.; Chen, B.-L.; Chen, Z. J. Org. Chem. 2016, 81, 3568.  doi: 10.1021/acs.joc.6b00185

    17. [17]

      Wei, H.; Hu, Q.; Ma, Y.; Wei, L.; Liu, J.; Shi, M.; Wang, F. Asian J. Org. Chem. 2017, 6, 662.  doi: 10.1002/ajoc.v6.6

    18. [18]

      Kamijo, S.; Jin, T.; Huo, Z.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 7786.  doi: 10.1021/ja034191s

    19. [19]

      Kamijo, S.; Jin, T.; Huo, Z.; Yamamoto, Y. J. Org. Chem. 2004, 69, 2386.  doi: 10.1021/jo035292b

    20. [20]

      Xu, K.; Thieme, N.; Breit, B. Angew. Chem., Int. Ed. 2014, 53, 7268.  doi: 10.1002/anie.201403682

    21. [21]

      Yan, Wu.; Wang, Q.; Chen, Y.; Petersen, J. L.; Shi, X. Org. Lett. 2010, 12, 3308.  doi: 10.1021/ol101082v

    22. [22]

      Duan, H.; Yan, W.; Sengupta, S.; Shi, X. Bioorg. Med. Chem. Lett. 2009, 19, 3899.  doi: 10.1016/j.bmcl.2009.03.096

    23. [23]

      Yan, W.; Ye, X.; Weise, K.; Petersen, J. L.; and Shi, X. Chem. Commun. 2012, 48, 3521.  doi: 10.1039/c2cc17522c

    24. [24]

      Zhang, Z.; Chang, L.; Wang, S.; Wang, H.; Yao, Z.-J. RSC Adv. 2013, 3, 18446.  doi: 10.1039/c3ra43075h

    25. [25]

      Poznański, J.; Najda, A.; Bretner, M.; Shugar, D. J. Phys. Chem. A 2007, 111, 6501.

    26. [26]

      Kitamura, T.; Morshed, M. H.; Tsukada, S.; Miyazaki, Y.; Iguchi, N.; Inoue, D. J. Org. Chem. 2011, 76, 8117.  doi: 10.1021/jo2015467

    27. [27]

      Liu, Y.; Yan, W.; Chen, Y.; Petersen, J. L.; Shi, X. Org. Lett. 2008, 10, 5389.  doi: 10.1021/ol802246q

    28. [28]

      Yan, W.; Wang, Q.; Lin, Q.; Li, M.; Petersen, J. L.; Shi, X. Chem.-Eur. J. 2011, 17, 5011.  doi: 10.1002/chem.v17.18

    29. [29]

      Zhang, Y.; Ye, X.; Petersen, J. L.; Li, M.; Shi, X. J. Org. Chem. 2015, 80, 3664.  doi: 10.1021/acs.joc.5b00006

    30. [30]

      Wang, X.-J.; Zhang, L.; Lee, H.; Haddad, N.; Krishnamurthy, D.; Senanayake, C. H. Org. Lett. 2009, 11, 5026.  doi: 10.1021/ol9019875

    31. [31]

      Li, J.; Zhang, Y.; Wang, D.; Wang, W.; Gao, T.; Wang, L.; Li, J.; Huang, G.; Chen, B. Synlett 2010, 1617.
       

    32. [32]

      Liu, X.; Li, J.; Chen, B. New J. Chem. 2013, 37, 965.  doi: 10.1039/c3nj40912k

    33. [33]

      Zhang, Y.; Li, X.; Li, J.; Chen, J.; Meng, X.; Zhao, M.; Chen, B. Org. Lett. 2012, 14, 26.  doi: 10.1021/ol202718d

    34. [34]

      Kamal, A.; Swapna, P. RSC Adv. 2013, 3, 7419.  doi: 10.1039/c3ra22485f

    35. [35]

      Singh, D. P.; Allam, B. K.; Singh, R.; Singh, K. N.; Singh, V. P. RSC Adv. 2016, 6, 15518.  doi: 10.1039/C5RA27907K

    36. [36]

      Ueda, S.; Su, M.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50, 8944.  doi: 10.1002/anie.v50.38

    37. [37]

      Ueda, S.; Ali, S.; Fors, B. P.; Buchwald, S. L. J. Org. Chem. 2012, 77, 2543.  doi: 10.1021/jo202537e

    38. [38]

      Lopes, A. B.; Wagner, P.; Souza, R. O. M. A.; Germain, N. L.; Uziel, J.; Bourguignon, J.-J.; Schmitt, M.; Miranda, L. S. M. J. Org. Chem. 2016, 81, 4540.  doi: 10.1021/acs.joc.6b00323

    39. [39]

      Wen, J.; Zhu, L.-L.; Bi, Q.-W.; Shen, Z.-Q.; Li, X.-X.; Li, X.; Wang, Z.; Chen, Z. Chem.-Eur. J. 2014, 20, 974.  doi: 10.1002/chem.201302761

    40. [40]

      Gu, C.-X.; Bi, Q.-W.; Gao, C.-K.; Wen, J.; Zhao, Z.-G.; Chen, Z. Org. Biomol. Chem. 2017, 15, 3396.  doi: 10.1039/C7OB00329C

    41. [41]

      Zhang, Y.-C.; Jin, R.; Li, L.-Y.; Chen, Z.; Fu, L.-M. Molecules 2017, 22, 1380.  doi: 10.3390/molecules22091380

    42. [42]

      Guru, M. M.; Punniyamurthy, T. J. Org. Chem. 2012, 77, 5063.  doi: 10.1021/jo300592t

    43. [43]

      Stewart, S.; Harris, R.; Jamieson, C. Synlett 2014, 2480.
       

    44. [44]

      Wu, L.; Guo, S.; Wang, X.; Guo, Z.; Yao, G.; Lin, Q.; Wu, M. Tetrahedron Lett. 2015, 56, 2145.  doi: 10.1016/j.tetlet.2015.03.019

    45. [45]

      Gavlik, K. D.; Lesogorova, S. G.; Sukhorukova, E. S.; Subbotina, J. O.; Slepukhin, P. A.; Benassi, E.; Belskaya, N. P. Eur. J. Org. Chem. 2016, 2700.

    46. [46]

      Ai, W. M. S. Thesis, Dalian University of Technology, Dalian, 2008 (in Chinese).

    47. [47]

      Liu, G.-B.; Zhao, H.-Y.; Yang, H.-J.; Gao, X.; Li, M.-K.; Thiemannb, T. Adv. Synth. Catal. 2007, 349, 1637.  doi: 10.1002/(ISSN)1615-4169

    48. [48]

      Dong, J.; Jin, B.; Sun, P. Org. Lett. 2014, 16, 4540.  doi: 10.1021/ol502090n

    49. [49]

      Zhou, Z.; Liu, Q.-L.; Li, W.; Zhu, Y.-M. Heterocycles 2011, 83, 2057.  doi: 10.3987/COM-11-12264

    50. [50]

      Kale, R. R.; Prasad, V.; Hussain, H. A.; Tiwari, V. K. Tetrahedron Lett. 2010, 51, 5740.  doi: 10.1016/j.tetlet.2010.08.083

    51. [51]

      Shang, X.; Zhao, S.; Chen, W.; Chen, C.; Qiu, H. Chem.-Eur. J. 2014, 20, 1825.  doi: 10.1002/chem.v20.7

    52. [52]

      Liu, Q.-L.; Wen, D.-D.; Hang, C.-C.; Li, Q.-L.; Zhu, Y.-M. Helv. Chim. Acta 2010, 93, 1350.  doi: 10.1002/hlca.v93:7

    53. [53]

      Zhou, J.; He, J.; Wang, B.; Yang, W.; Ren, H. J. Am. Chem. Soc. 2011, 133, 6868.  doi: 10.1021/ja2007438

    54. [54]

      Ryu, T.; Min, J.; Choi, W.; Jeon, W. H.; Lee, P. H. Org. Lett. 2014, 16, 2810.  doi: 10.1021/ol501250t

    55. [55]

      Khatun, N.; Modi, A.; Ali, W.; Patel, B. K. J. Org. Chem. 2015, 80, 9662.  doi: 10.1021/acs.joc.5b01706

    56. [56]

      Li, J.; Zhou, H.; Zhang, J.; Yang, H.; Jiang, G. Chem. Commun. 2016, 52, 9589.  doi: 10.1039/C6CC04341K

  • 加载中
    1. [1]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    2. [2]

      Xuefei Zhao Xuhong Hu Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, 2025, 40(8): 360-367. doi: 10.12461/PKU.DXHX202410008

    3. [3]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    4. [4]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    5. [5]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    6. [6]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    7. [7]

      Jingxuan Zhang Weihao Jiang Siyuan Zhang Hongye Tian Ziye Huang Lin Huang Qikun Wu Jing Yang Yibin Jiang Cheng Wang . Automation and AI-Assisted Investigation of the Chemical Reactivity of Sulfosalicylic Acid. University Chemistry, 2026, 41(1): 332-345. doi: 10.12461/PKU.DXHX202505108

    8. [8]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    9. [9]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    10. [10]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    11. [11]

      Yanzhe WANGXiaoming GUOQiangsheng GUOLiang LIBin LUPeihang YE . Effect of Ce introduction on the low-temperature performance of NiAl catalyst for CO2 methanation. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2218-2228. doi: 10.11862/CJIC.20250202

    12. [12]

      Chengxiao ZhaoZhaolin LiDongfang WuXiaofei Yang . SBA-15 templated covalent triazine frameworks for boosted photocatalytic hydrogen production. Acta Physico-Chimica Sinica, 2026, 42(1): 100149-0. doi: 10.1016/j.actphy.2025.100149

    13. [13]

      Qiaorong RU . Synthesis and characterization of tripyridine functionalized polyionic liquid luminescent materials. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 111-119. doi: 10.11862/CJIC.20250121

    14. [14]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    15. [15]

      Zhenhuan WangWeifei WeiRuijie MaDou LuoZhanxiang ChenJun ZhangLiyang YuGang LiZhenghui Luo . 苯并[a]苯嗪受体的核心氰基化实现高效(19.04%)绿色溶剂加工的二元有机太阳能电池. Acta Physico-Chimica Sinica, 2026, 42(2): 100182-0. doi: 10.1016/j.actphy.2025.100182

    16. [16]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    17. [17]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    18. [18]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    19. [19]

      Shengwen XULonglong YANGHouji CAODeshuang TUXing WEIChangsheng LUHong YAN . Research progress on light-induced functionalization of polyhedral carborane clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2187-2200. doi: 10.11862/CJIC.20250192

    20. [20]

      Qi Zhang Ziyu Liu Hongxia Tan Jun Tong Dazhen Xu . Research Progress on Direct Synthesis of β-Hydroxy Sulfones via Difunctionalization of Olefins. University Chemistry, 2025, 40(11): 199-209. doi: 10.12461/PKU.DXHX202412064

Metrics
  • PDF Downloads(26)
  • Abstract views(2735)
  • HTML views(513)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return