Citation: Huang Zhongshou, Zhu Xingliang, He Yungang, Li Fenglei, Meng Tianzhuo, Shi Xiaoxin. Synthesis of the Variously Substituted Nitroalkenes via Ethylenediaminium Trifluoroacetate-Catalyzed Condensation of Nitroalkanes with Aryl Aldehydes[J]. Chinese Journal of Organic Chemistry, ;2018, 38(4): 890-895. doi: 10.6023/cjoc201709052 shu

Synthesis of the Variously Substituted Nitroalkenes via Ethylenediaminium Trifluoroacetate-Catalyzed Condensation of Nitroalkanes with Aryl Aldehydes

  • Corresponding author: Shi Xiaoxin, xxshi@ecust.edu.cn
  • Received Date: 30 September 2017
    Revised Date: 22 November 2017
    Available Online: 5 April 2017

    Fund Project: the National Natural Science Foundation of China 20972048Project supported by the National Natural Science Foundation of China (No. 20972048)

Figures(1)

  • A general method for synthesis of the variously substituted nitroalkenes via ethylenediaminium trifluoroacetate (EDA-TFA)-catalyzed condensation of nitroalkanes with aryl aldehydes is described. Various aminium salts of ethylenediamine with different acids as well as aminium salts of trifluoroacetic acid with different amines were examined as catalysts, and various solvents were also tested for the reaction. It was found that EDA-TFA is obviously more effective than other aminium salts, and dimethylsulfoxide (DMSO) is better than other solvents. In presence of 5 mol% of EDA-TFA as the catalyst, one-pot reaction of aryl aldehydes with various nitroalkanes in DMSO efficiently afforded variously substituted nitroalkenes in 82%~96% yields.
  • 加载中
    1. [1]

      (a) Wang, Y.; Du, Y.; Huang, X.; Wu, X.; Zhang, Y.; Yang, S.; Chi, Y. R. Org. Lett. 2017, 19, 632.
      (b) Potter, T. J.; Kamber, D. N.; Mercado, B. Q.; Ellman, J. A. ACS Catal. 2017, 7, 150.
      (c) Li, D.; Liu, L.; Tian, Y.; Ai, Y.; Tang, Z.; Sun, H.-B.; Zhang, G. Tetrahedron 2017, 73, 3959.
      (d) Liu, L.; Ai, Y.; Li, D.; Qi, L.; Zhou, J.; Tang, Z.; Shao, Z.; Liang, Q.; Sun, H.-B. ChemCatChem 2017, 9, 3131.
      (e) Lian, X.-L.; Meng, J.; Han, Z.-Y. Org. Lett. 2016, 18, 4270.
      (f) Matsuda, Y.; Koizumi, A.; Haraguchi, R.; Fukuzawa, S.-I. J. Org. Chem. 2016, 81, 7939.
      (g) Bai, X.-F.; Song, T.; Xu, Z.; Xia, C.-G.; Huang, W.-S.; Xu, L.-W. Angew. Chem., Int. Ed. 2015, 54, 5255.
      (h) Yang, Y.; Du, D. Chin. J. Chem. 2014, 32, 853.
      (i) Phelan, J. P.; Patel, E. J.; Ellman, J. A. Angew. Chem., Int. Ed. 2014, 53, 11329.
      (j) Kumar, R.; Kumar, T.; Mobin, S. M.; Mambothiri, I. N. N. J. Org. Chem. 2013, 78, 5073.
      (k) Chen, L.-A.; Xu, W.; Huang, B.; Ma, J.; Wang, L.; Xi, J.; Harms, K.; Gong, L.; Meggers, E. J. Am. Chem. Soc. 2013, 135, 10598.
      (l) Boyce, G. R.; Liu, S.; Johnson, J. S. Org. Lett. 2012, 14, 652.
      (m) Dong, W.; Xu, D.; Xie, J. Chin. J. Chem. 2012, 30, 1771.
      (n) Wan, N.; Hui, Y.; Xie, Z.; Wang, J. Chin. J. Chem. 2012, 30, 311.
      (o) Ma, S.; Wu, L.; Liu, M.; Wang, Y. Chin. J. Chem. 2012, 30, 2707.
      (p) Wu, J.; Li, X.; Wu, F.; Wan, B. Org. Lett. 2011, 13, 4834.
      (q) Sukhorukov, A. Y.; Boyko, Y. D.; Ioffe, S. L.; Khomutova, Y. A.; Nelyubina, Y. V.; Tartakovsky, V. A. J. Org. Chem. 2011, 76, 7893.
      (r) Arai, T.; Wasai, M.; Yokoyama, N. J. Org. Chem. 2011, 76, 2909.
      (s) Nakamura, A.; Lectard, S.; Hashizume, D.; Hamashima, Y.; Sodeoka, M. J. Am. Chem. Soc. 2010, 132, 4036.
      (t) Li, Q.; Ding, C.-H.; Hou, X.-L.; Dai, L.-X. Org. Lett. 2010, 12, 1080.
      (u) Arai, T.; Mishiro, A.; Yokoyama, N.; Suzuki, K.; Sato, H. J. Am. Chem. Soc. 2010, 132, 5338.
      (v) Guan, X.-Y.; Wei, Y.; Shi, M. Org. Lett. 2010, 12, 5024.
      (w) O'Connor, C. J.; Roydhouse, M. D.; Przybyl, A. M.; Wall, M. D.; Southern, J. M. J. Org. Chem. 2010, 75, 2534.
      (x) Wu, M.; Wang, S.; Xia, C.; Sun, W. Chin. J. Chem. 2010, 28, 1424.

    2. [2]

      (a) Bates, D. J. P.; Smitherman, P. K.; Townsend, A. J.; King, S. B.; Morrow, C. S. Biochemistry 2011, 50, 7765.
      (b) Tang, X.; Guo, Y.; Nakamura, K.; Huang, H.; Hamblin, M.; Chang, L.; Villacorta, L.; Yin, K.; Ouyang, H.; Zhang, J. Biochem. Biophy. Res. Commun. 2010, 397, 239.
      (c) Gorczynski, M. J.; Smitherman, P. K.; Akiyama, T. E.; Wood, H. B.; Berger, J. P.; King, S. B.; Morrow, C. S. J. Med. Chem. 2009, 52, 4631.
      (d) Wang, W.-Y.; Hsieh, P.-W.; Wu, Y.-C.; Wu, C.-C. Biochem. Pharmacol. 2007, 74, 601.
      (e) Gorczynski, M. J.; Huang, J.; Lee, H.; King, S. B. Bioorg. Med. Chem. Lett. 2007, 17, 2013.
      (f) Milhazes, N.; Calheiros, R.; Marques, M. P. M.; Garrido, J.; Cordeiro, M. N. D. S.; Rodrigues, C.; Quinteira, S.; Novais, C.; Peixe, L.; Borges, F. Bioorg. Med. Chem. 2006, 14, 4078.
      (g) Mohan, R.; Rastogi, N.; Namboothiri, I. N. N.; Mobin, S. M.; Panda, D. Bioorg. Med. Chem. 2006, 14, 8073.
      (h) Gorczynski, M. J.; Huang, J.; King, S. B. Org. Lett. 2006, 8, 2305.

    3. [3]

      (a) Motornov, V. A.; Muzalevskiy, V. M.; Tabolin, A. A.; Novikov, R. A.; Nelyubina, Y. V.; Nenajdenko, V. G.; Ioffe, S. L. J. Org. Chem. 2017, 82, 5274.
      (b) Maity, S.; Manna, S.; Rana, S.; Naveen, T.; Mallick, A.; Maiti, D. J. Am. Chem. Soc. 2013, 135, 3355.
      (c) Naveen, T.; Maity, S.; Sharma, U.; Maiti, D. J. Org. Chem. 2013, 78, 5949.
      (d) Maity, S.; Naveen, T.; Sharma, U.; Maiti, D. Org. Lett. 2013, 15, 3384.
      (e) Manna, S.; Jana, S.; Saboo, T.; Maji, A.; Maiti, D. Chem. Commun. 2013, 49, 5286.

    4. [4]

      (a) Hass, H. B.; Riley, E. F. Chem. Rev. 1943, 32, 373.
      (b) Ballini, R.; Castagnani, R.; Petrini, M. J. Org. Chem. 1992, 57, 2160.
      (c) Concellon, J. M.; Bernard, P. L.; Rodriguez-Solla, H.; Concellon, C. J. Org. Chem. 2007, 72, 5421.
      (d) Liu, Y.-Y.; Wang, S.-W.; Zhang, L.-J.; Wu, Y.-J.; Li, Q.-H.; Yang, G.-S.; Xie, M.-H. Chin. J. Chem. 2008, 26, 2267.
      (e) Alizadeh, A.; Khodaei, M. M.; Eshghi, A. J. Org. Chem. 2010, 75, 8295.
      (f) Rokhum, L.; Bez, G. Tetrahedron Lett. 2013, 54, 5500.

    5. [5]

      (a) Henry, L. Bull. Soc. Chim. Fr. 1895, 13, 999.
      (b) Rosini, G. Ballini, R. Synthesis 1988, 833.
      (c) Ballini, R.; Bosica, G. J. Org. Chem. 1997, 62, 425.
      (d) Kisanga, P. B.; Verkade, J. G. J. Org. Chem. 1999, 64, 4298.
      (e) Luzzio, F. A. Tetrahedron 2001, 57, 915.

    6. [6]

      (a) Xi, B.-M.; Jiang, Z.-Z.; Zou, J.-W.; Ni, P.-Z.; Chen, W.-H. Bioorg. Med. Chem. 2011, 19, 783.
      (b) McNamara, Y. M.; Cloonan, S. M.; Knox, A. J. S.; Keating, J. J.; Butler, S. G.; Peters, G. H.; Meagan, M. J.; Williams, D. C. Bioorg. Med. Chem. 2011, 19, 1328.
      (c) Rodríguez, J. M; Pujol, M. D. Tetrahedron Lett. 2011, 52, 2629.
      (d) Kim, G.-J.; Kim, H.-J. Tetrahedron Lett. 2010, 51, 185.
      (e) Cheng, P.; Jiang, Z.-Y.; Wang, R.-R.; Zhang, X.-M.; Wang, Q.; Zheng, Y.-T.; Zhou, J.; Chen, J.-J. Biorg. Med. Chem. Lett. 2007, 17, 4476.
      (f) Elsner, J.; Boeckler, F.; Davidson, K.; Sugden, D.; Gmeiner, P. Bioorg. Med. Chem. 2006, 14, 1949.
      (g) Huh, S.; Chen, H.-T.; Wiench, J. W.; Pruski, M.; Lin, V. S.-Y. J. Am. Chem. Soc. 2004, 126, 1010.
      (h) Osuna, M. R.; Aguirre, G.; Somanathan, R.; Molins, E. Tetrahedron:Asymmetry 2002, 13, 2261.
      (i) Degnan, A. P.; Meyers, A. I. J. Org. Chem. 2000, 65, 3503.

    7. [7]

      Yang, J.; Dong, J.; Lu, X.; Zhang, Q.; Ding, W.; Shi, X. Chin. J. Chem. 2012, 30, 2827.  doi: 10.1002/cjoc.v30.12

    8. [8]

      Ren, Y.; Li, M.; Yang, J.; Peng, J.; Gu, Y. Adv. Synth. Catal. 2011, 353, 3473.  doi: 10.1002/adsc.201100530

    9. [9]

      Ballini, R.; Castagnai, R.; Petrini, M. J. Org. Chem. 1992, 57, 2160.  doi: 10.1021/jo00033a045

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    3. [3]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    4. [4]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    5. [5]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    6. [6]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    7. [7]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    8. [8]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    9. [9]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    10. [10]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    11. [11]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    12. [12]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    13. [13]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    14. [14]

      Xunzhang Fan Yuanjin Zhao Shufang Luo Aihua He . Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing. University Chemistry, 2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065

    15. [15]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    16. [16]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    17. [17]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    18. [18]

      Jiamin Li Wenyue Zhong Kin Shing Chan . “烯”君入瓮又入学——据元素周期表与酸碱理论谈烯烃教学. University Chemistry, 2025, 40(6): 177-182. doi: 10.12461/PKU.DXHX202408040

    19. [19]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    20. [20]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

Metrics
  • PDF Downloads(9)
  • Abstract views(1491)
  • HTML views(309)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return