Citation: Hua Yuhui, Zhang Hong, Xia Haiping. History and Development[J]. Chinese Journal of Organic Chemistry, ;2018, 38(1): 11-28. doi: 10.6023/cjoc201709009 shu

History and Development

  • Corresponding author: Zhang Hong, zh@xmu.edu.cn Xia Haiping, hpxia@xmu.edu.cn
  • Received Date: 8 September 2017
    Revised Date: 29 September 2017
    Available Online: 11 January 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21332002, 21561162001) and the Fundamental Research Funds for the Central Universities (No. 20720150046)the National Natural Science Foundation of China 21561162001the Fundamental Research Funds for the Central Universities 20720150046the National Natural Science Foundation of China 21332002

Figures(37)

  • Aromaticity is one of the most fundamental concept in organic chemistry. Aromatic compounds generally present special thermodynamic stability. Research on aromaticity can help us to understand the stability essence of aromatic compounds, and thus enables the further prediction and construction of species with stabilization or destablization. The endless richness of aromaticity researches usually originates the nature and criterion of aromaticity. The main emphasis of this review is on a discussion of historical discoveries, definitions and classification of aromaticity-related structural types, as well as various theoretically and experimentally criterions. Furthermore, this review contains the recent development of aromaticity illustrated by recent representative examples.
  • 加载中
    1. [1]

      Faraday, M. Philos. Trans. R. Soc. London 1825, 115, 440.  doi: 10.1098/rstl.1825.0022

    2. [2]

      Schleyer, P. v. R. Pure Appl. Chem. 1996, 68, 209.
       

    3. [3]

      Feng, J. K. J. Mol. Sci. 2005, 21, 1(in Chinese).
       

    4. [4]

      Lloyd, D. J. Chem. Inf. Comput. Sci. 1996, 36, 442.  doi: 10.1021/ci950158g

    5. [5]

      (a) Kekulé, A. Bull. Soc. Chim. Paris 1865, 3, 98.
      (b) Kekulé, A. Ann. 1866, 137, 129.
      (c) Kekulé, A. Ann. 1872, 162, 77.

    6. [6]

      Erlenmeyer, E. Ann. 1866, 137, 327.

    7. [7]

      Pascal, P. Ann. Chim. Phys. 1910, 19, 5.

    8. [8]

      Armit, J. W.; Robinson, R. J. Chem. Soc. 1925, 127, 1604.  doi: 10.1039/CT9252701604

    9. [9]

      Hückel, E. Z. Phys. 1931, 70, 204.  doi: 10.1007/BF01339530

    10. [10]

      Pauling, L. J. Chem. Phys. 1936, 4, 673.  doi: 10.1063/1.1749766

    11. [11]

      Wheland, G. W. Resonance in Organic Chemistry, Wiley, New York, 1955.

    12. [12]

      London, F. J. Phys. Radium 1937, 8, 397.  doi: 10.1051/jphysrad:01937008010039700

    13. [13]

      Pople, J. A. J. Chem. Phys. 1956, 24, 1111.
       

    14. [14]

      Craig, D. P. Nature 1958, 181, 1052.  doi: 10.1038/1811052a0

    15. [15]

      Heilbronner, E. Tetrahedron Lett. 1964, 5, 1923.  doi: 10.1016/S0040-4039(01)89474-0

    16. [16]

      Dewar, M. J. S.; Gleicher, G. J. J. Am. Chem. Soc. 1965, 87, 685.  doi: 10.1021/ja01082a001

    17. [17]

      (a) Dauben, Jr., H. J.; Wilson, J. D.; Laity, J. L. J. Am. Chem. Soc. 1968, 90, 811.
      (b) Dauben, Jr., H. J.; Wilson, J. D.; Laity, J. L. J. Am. Chem. Soc. 1969, 91, 1991.
      (c) Dauben, Jr., H. J.; Wilson, J. D.; Laity, J. L. In Non-Benzenoid Aromatics, Ed.:Snyder, J. P., Vol. 2, Academic Press, New York, 1971.

    18. [18]

      (a) Benson, R. C.; Flygare, W. H. J. Am. Chem Soc. 1970, 92, 7523.
      (b) Schmalz, T. G.; Norris, C. L.; Flygare, W. H. J. Am. Chem Soc. 1973, 95, 7961.
      (c) Schmalz, T. G.; Gierke, T. D.; Beak, P.; Flygare, W. H. Tetrahedron Lett. 1974, 33, 2885.
      (d) Palmer, M. H.; Findlay, R. H. Tetrahedron Lett. 1974, 33, 253.
      (e) Sutter, D. H.; Flygare, W. H. Top. Curr. Chem. 1976, 63, 89.

    19. [19]

      Thorn, D. L.; Hoffmann, R. Nouv. J. Chim. 1979, 3, 39.
       

    20. [20]

      (a) Kutzelnigg, W. Isr. J. Chem. 1980, 19, 193.
      (b) Kutzelnigg, W.; Fleischer, U.; Schindler, M. NMR, Basic Principles and Progress, Vol. 23, Springer Verlag, Berlin, 1990, p. 165.

    21. [21]

      Elliott, G. P.; Roper, W. R.; Waters, J. M. J. Chem. Soc., Chem. Commun. 1982, 14, 811.

    22. [22]

      Schleyer, P. v. R.; Maerker, C; Dransfeld, A. Jiao, H. J. Am. Chem. Soc. 1996, 118, 6317.  doi: 10.1021/ja960582d

    23. [23]

      Wallenborn, E.-U.; Haldimann, R. F.; Klarner, F.-G.; Diederich, F. Chem. Eur. J. 1998, 4, 2258.  doi: 10.1002/(ISSN)1521-3765

    24. [24]

      Wen, T. B.; Zhou, Z. Y.; Jia, G. Angew. Chem., Int. Ed. 2001, 42, 5954.
       

    25. [25]

      Ajami, D.; Oeckler, O.; Simon & Amp, A.; Herges, R. Nature 2003, 426, 819.  doi: 10.1038/nature02224

    26. [26]

      Zhu, C.; Li, S.; Luo, M.; Zhou, X.; Niu, Y.; Lin, M.; Zhu, J.; Cao, Z.; Lu, X.; Wen, T.; Xie, Z.; Schleyer, P. V. R.; Xia, H. Nat. Chem. 2013, 5, 698.  doi: 10.1038/nchem.1690

    27. [27]

      Zhang, Y.; Wei, J.; Chi, Y, ; Zhang, X.; Zhang, W. X.; Xi, Z. J. Am. Chem. Soc. 2017, 139, 5039.  doi: 10.1021/jacs.7b02039

    28. [28]

      Krygowski, T. M.; Cyranski M. K. Chem. Rev. 2001, 101, 1385.  doi: 10.1021/cr990326u

    29. [29]

      Breslow, R. Chem. Eng. News 1965, 43, 90.  doi: 10.1021/cen-v043n040.p090

    30. [30]

      Breslow, R. Acc. Chem. Res. 1973, 6, 393.  doi: 10.1021/ar50072a001

    31. [31]

      Anet, F. A. L.; Bourn, A. J. R.; Lin, Y. S. J. Am. Chem. Soc. 1964, 86, 3576.  doi: 10.1021/ja01071a046

    32. [32]

      Chen, Z.; King, R. B. Chem. Rev. 2005, 105, 3613.  doi: 10.1021/cr0300892

    33. [33]

      Stock, A.; Pohland, E. Eur J. Inorg. Chem. 1926, 59, 2215.

    34. [34]

      Wiberg, E. Naturwissenschaften 1948, 35, 182.  doi: 10.1007/BF00627385

    35. [35]

      Dixon, W. T. Tetrahedron 1962, 18, 875.  doi: 10.1016/S0040-4020(01)92738-3

    36. [36]

      Avram, M.; Marica, E.; Nenitzescu, C. D. Eur. J. Inorg. Chem. 1959, 92, 1088.

    37. [37]

      Hirsch, A. The Chemistry of Fullerenes. Thieme, Stuttgart, 1994.

    38. [38]

      Taylor, R. C. R. Chim. 2006, 9, 982.  doi: 10.1016/j.crci.2006.01.004

    39. [39]

      Rubin, Y. In Fullerenes and Related Structures, Ed.:Hirsch, A., Springer, Berlin & Heidelberg, 1999, 199, p. 67.

    40. [40]

      Sondheimer, F.; Wolovsky, R.; Amiel, Y. J. Am. Chem. Soc. 1962, 84, 274.  doi: 10.1021/ja00861a030

    41. [41]

      Jackman, L. M.; Sondheimer, F.; Amiel, Y.; Ben-Efraim, D. A.; Gaoni, Y.; Wolovsky, R.; Bothner-By, A. A. J. Am. Chem. Soc. 1962, 84, 4307.  doi: 10.1021/ja00881a022

    42. [42]

      Karplus, M. J. Chem. Phys. 1960, 33, 1842.  doi: 10.1063/1.1731515

    43. [43]

      Nowakowski, J. Theor. Chim. Acta 1968, 10, 79.  doi: 10.1007/BF00529046

    44. [44]

      Nyulászi, L. Chem. Rev. 2001, 101, 1229.  doi: 10.1021/cr990321x

    45. [45]

      Randić, M. Chem. Rev. 2003, 103, 3449.  doi: 10.1021/cr9903656

    46. [46]

      Lee, V. Y.; Sekiguchi, A. Angew. Chem., Int. Ed. 2007, 46, 6596.  doi: 10.1002/(ISSN)1521-3773

    47. [47]

      Boldyrev, A. I.; Wang, L. S. Chem. Rev. 2005, 105, 3716.  doi: 10.1021/cr030091t

    48. [48]

      Rzepa, H. S. Chem. Rev. 2005, 105, 3697.  doi: 10.1021/cr030092l

    49. [49]

      Borden, W. T. Modern Molecular Orbital Theory for Organic Chemists, Prentice Hall, Englewood Cliffs, NJ, 1975.

    50. [50]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.

    51. [51]

      Becke, A. D. J. Chem. Phys. 1993, 98, 5648.  doi: 10.1063/1.464913

    52. [52]

      Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200.  doi: 10.1016/0009-2614(89)87234-3

    53. [53]

      Dennington, R.; Keith, T.; Millam, J. GaussView, Version 5, Semichem Inc., Shawnee Mission KS, 2009.

    54. [54]

      Hirsch, A.; Chen, Z.; Jiao, H. Angew. Chem., Int. Ed. 2000, 39, 3915.  doi: 10.1002/(ISSN)1521-3773

    55. [55]

      Mauksch, M.; Tsogoeva, S. B. Chem.-Eur. J. 2010, 16, 7843.  doi: 10.1002/chem.201000396

    56. [56]

      Bleeke, J. R. Chem. Rev. 2001, 101, 1205.  doi: 10.1021/cr990337n

    57. [57]

      Pauling, L.; Sherman, J. J. Chem. Phys. 1933, 1, 606.  doi: 10.1063/1.1749335

    58. [58]

      Minkin, V. I.; Glukhovtsev, M. N.; Simkin, B. Y. Aromaticity and Antiaromaticity, Electronic and Structural Aspects, J. Wiley, New York, 1994.

    59. [59]

      George, P.; Trachtman, M.; Bock, C. W.; Brett, A. M. Theor. Chim. Acta 1975, 38, 121.  doi: 10.1007/BF00581469

    60. [60]

      Hehre, W. J.; Ditchfield, R.; Radom, L.; Pople, J. A. J. Am. Chem. Soc. 1970, 92, 4796.  doi: 10.1021/ja00719a006

    61. [61]

      Gordon, M. S. Modern Electronic Structure Theory, Part I, World Scientific, Singapore, 1995.

    62. [62]

      Schleyer, P. V. R.; Pühlhofer, F. Org. Lett. 2002, 4, 2873.  doi: 10.1021/ol0261332

    63. [63]

      Wannere, C. S.; Moran, D.; Allinger, N. L.; Hess, B. A.; Schaad, L. J.; Schleyer, P. V. R. Org. Lett. 2003, 5, 2983.  doi: 10.1021/ol034979f

    64. [64]

      Suresh, C. H.; Koga, N. Chem. Phys. Lett. 2006, 419, 550.  doi: 10.1016/j.cplett.2005.12.028

    65. [65]

      Fallah-Bagher-Shaidaei, H.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. V. R. Org. Lett. 2006, 8, 863.  doi: 10.1021/ol0529546

    66. [66]

      Islas, R.; Martinez-Guajardo, G.; Jemenez-Halla, J. O. C.; Sola, M; Merino, G. J. Chem. Theory Comput. 2010, 6, 1131.  doi: 10.1021/ct100098c

    67. [67]

      Herges, R.; Geuenich, D. J. Phys. Chem. A 2001, 105, 3214.  doi: 10.1021/jp0034426

    68. [68]

      Geuenich, D.; Hess. K.; Köhler, F.; Herges, R. Chem. Rev. 2005, 105, 3758.  doi: 10.1021/cr0300901

    69. [69]

      Steiner, E.; Fowler, P. W. Int. J. Quantum Chem. 1996, 60, 609.  doi: 10.1002/(ISSN)1097-461X

    70. [70]

      Kruszewski, J.; Krygowski, T. M. Tetrahedron Lett. 1972, 13, 3839.  doi: 10.1016/S0040-4039(01)94175-9

    71. [71]

      Andrzejak, M.; Kubisiak, P. Struct. Chem. 2013, 24, 1171.  doi: 10.1007/s11224-012-0148-2

    72. [72]

      Becke, A. D.; Edgecombe, K. E. J. Chem. Phys. 1990, 92, 5397.  doi: 10.1063/1.458517

    73. [73]

      Savin, A.; Nesper, R.; Wengert, S.; F ssler, T. F. Angew. Chem., Int. Ed. 1997, 36, 1808.  doi: 10.1002/(ISSN)1521-3773

    74. [74]

      Santos, J. C.; Tiznado, W.; Contreras, R.; Fuentealba, P. J. Chem. Phys. 2004, 120, 1670.  doi: 10.1063/1.1635799

    75. [75]

      Zubarev, D. Y.; Boldyrev, A. I. Phys. Chem. Chem. Phys. 2008, 10, 5207.  doi: 10.1039/b804083d

    76. [76]

      Juse, J.; Sundholm, D. Phys. Chem. Chem. Phys. 1999, 1, 3429.  doi: 10.1039/a903847g

    77. [77]

      Bird, C. W. Tetrahedron 1985, 41, 1409.  doi: 10.1016/S0040-4020(01)96543-3

    78. [78]

      Kotelevskii, S. I.; Prezhdo, O. V. Tetrahedron 2001, 57, 5715.  doi: 10.1016/S0040-4020(01)00485-9

    79. [79]

      Cyrański, M. K. Chem. Rev. 2005, 105, 3773.  doi: 10.1021/cr0300845

    80. [80]

      Aihara, J. I. J. Am. Chem. Soc. 2006, 128, 2873.  doi: 10.1021/ja056430c

    81. [81]

      Aihara, J.; Kanno, H.; Ishida, T. J. Phys. Chem. A 2007, 111, 8873.  doi: 10.1021/jp0733567

    82. [82]

      Giambiagi, M.; de Giambiagi, M. S.; dos Santos Silva, C. D., de Figueiredo, A. P. Phys. Chem. Chem. Phys. 2000, 2, 3381.  doi: 10.1039/b002009p

    83. [83]

      Ponec, R.; Bultinck, P.; Saliner, A. G. J. Phys. Chem. A 2005, 109, 6606.  doi: 10.1021/jp052179b

    84. [84]

      Piermarini, G. J.; Mighell, A. D.; Weir, C. E.; Block, S. Science 1969, 165, 1250.  doi: 10.1126/science.165.3899.1250

    85. [85]

      Abrahams, S. C.; Robertson, J. M.; White, J. G. Acta Crystallogr. 1949, 2, 233.  doi: 10.1107/S0365110X49000618

    86. [86]

      Mason, R. Acta Crystallogr. 1964, 17, 547.  doi: 10.1107/S0365110X64001281

    87. [87]

      Petříček, V.; Císařová, I.; Hummel, L.; Kroupa, J.; Březina, B. Acta Crystallogr., Sect. B:Struct. Sci. 1990, 46, 830.  doi: 10.1107/S0108768190007510

    88. [88]

      Frampton, C. S.; Knight, K. S.; Shankland, N.; Shankland, K. J. Mol. Struct. 2000, 520, 29.  doi: 10.1016/S0022-2860(99)00280-X

    89. [89]

      Sondheimer, F.; Wolovsky, R. J. Am. Chem. Soc. 1962, 84, 260.  doi: 10.1021/ja00861a028

    90. [90]

      Spitler, E. L.; Johnson Ⅱ, C. A.; Haley, M. M. Chem. Rev. 2006, 106, 5344.  doi: 10.1021/cr050541c

    91. [91]

      Herges, R. Chem. Rev. 2006, 106, 4820.  doi: 10.1021/cr0505425

    92. [92]

      Willstatter, R.; Waser, E. Eur. J. Inorg. Chem. 1911, 44, 3423.
       

    93. [93]

      Masamune, S.; Seidner, R. T. J. Chem. Soc. D:Chem. Commun. 1969, 542.
       

    94. [94]

      Yavari, I.; Norouzi-Arasi, H. J. Mol. Struct.:THEOCHEM 2002, 593, 199.  doi: 10.1016/S0166-1280(02)00318-4

    95. [95]

      Oth, J. F. M.; Rottele, H.; Schroder, G. Tetrahedron Lett. 1970, 11, 61.  doi: 10.1016/S0040-4039(01)87565-1

    96. [96]

      Wiberg, K. B. Chem. Rev. 2001, 101, 1317.  doi: 10.1021/cr990367q

    97. [97]

      Allinger, N. L.; Sprague, J. T. J. Am. Chem. Soc. 1973, 95, 3893.  doi: 10.1021/ja00793a012

    98. [98]

      Castro, C.; Karney, W. L.; Valencia, M. A.; Vu, C. M. H.; Pemberton, R. P. J. Am. Chem. Soc. 2005, 127, 9704.  doi: 10.1021/ja052447j

    99. [99]

      Sondheimer, F.; Gaoni, Y. J. Am. Chem. Soc. 1960, 82, 5765.  doi: 10.1021/ja01506a061

    100. [100]

      (a) Oth, J. F. M. Pure Appl. Chem. 1971, 25, 573.
      (b) Jug, K.; Fasold, E. J. Am. Chem. Soc. 1987, 109, 2263.
      (c) Baumann, H.; Oth, J. F. M. Helv. Chim. Acta 1995, 78, 679.
      (d) Choi, C. H.; Kertesz, M. J. Am. Chem. Soc. 1997, 119, 11994.
      (e) Baumann, H.; Bunzli, J. J. Chem. Soc., Faraday Trans. 1998, 94, 2695.
      (f) Oda, M.; Sakamoto, Y.; Kajioka, T.; Uchiyama, T.; Miyatake, R.; Kuroda, S. Angew. Chem., Int. Ed. 2001, 40, 2660.
      (g) Vogel, E.; Engels, H.; Huber, W.; Lex, J.; Mullen, K. J. Am. Chem. Soc. 1982, 104, 3729.

    101. [101]

      Sondheimer, F.; Gaoni, Y. J. Am. Chem. Soc. 1961, 83, 4863.  doi: 10.1021/ja01484a042

    102. [102]

      (a) Martin-Santamaria, S.; Lavan, B.; Rzepa, H. S. J. Chem. Soc., Perkin Trans. 2 2000, 0, 1415.
      (b) Oth, J. F. M.; Gilles, J.-M. Tetrahedron Lett. 1968, 6259.
      (c) Johnson, S. M.; Paul, I. C.; King, G. S. D. J. Chem. Soc. (B) 1970, 643.

    103. [103]

      Castro, C.; Isborn, C. M.; Karney, W. L.; Mauksch, M.; Schleyer, P. V. R. Org. Lett. 2002, 4, 3431.  doi: 10.1021/ol026610g

    104. [104]

      Ajami, D.; Oeckler, O.; Simon, A.; Herges, R. Nature 2003, 426, 819.  doi: 10.1038/nature02224

    105. [105]

      Sondheimer, F.; Wolovsky, R.; Amiel, Y. J. Am. Chem. Soc. 1962 84, 274.  doi: 10.1021/ja00861a030

    106. [106]

      Longuet-Higgins, H. C.; Salem, L. Proc. R. Soc. London, Ser. A 1959, 251, 172.  doi: 10.1098/rspa.1959.0100

    107. [107]

      Yoshizawa, K.; Kato, T.; Yamabe, T. J. Phys. Chem. 1996, 100, 5697.  doi: 10.1021/jp953420x

    108. [108]

      Mislow, K. J. Chem. Phys. 1952, 20, 1489.  doi: 10.1063/1.1700789

    109. [109]

      Coulson, C. A.; Golebiewski, A. Tetrahedron 1960, 11, 125.  doi: 10.1016/0040-4020(60)89014-X

    110. [110]

      Bregman, J. Hirshfeld, F. L. Rabinovich, D. Schmidt, G. M. J. Acta Crystallogr. 1965, 19, 227.  doi: 10.1107/S0365110X65003158

    111. [111]

      Stevenson, C. D.; Kurth, T. L. J. Am. Chem. Soc. 2000, 122, 722.  doi: 10.1021/ja993604f

    112. [112]

      Reetz, M. T.; Hütte, S.; Goddard, R. Z. Naturforsch., B:J. Chem. Sci. 1995, 50, 415.

    113. [113]

      Gould, E. S. Acta Crystallogr. 1955, 8, 657.  doi: 10.1107/S0365110X55002053

    114. [114]

      Robertson, J. M.; Shearer, H. M. M.; Sim, G. A.; Watson, D. G. Acta Crystallogr. 1962, 15, 1.  doi: 10.1107/S0365110X62000018

    115. [115]

      Pople, J. A. Mol. Phys. 1958, 1, 175.  doi: 10.1080/00268975800100211

    116. [116]

      Pozharskii, A. F. Chem. Heterocycl. Com. 1985, 21, 717.  doi: 10.1007/BF00519137

    117. [117]

      (a) Bird, C. W. Tetrahedron 1992, 48, 335.
      (b) Bird, C. W. Tetrahedron 1990, 46, 5697.

    118. [118]

      Alkorta, I; Elguero, J. Struct. Chem. 2003, 14, 377.  doi: 10.1023/A:1024402027760

    119. [119]

      Winstein, S. J. Am. Chem. Soc. 1959, 81, 6524.  doi: 10.1021/ja01533a052

    120. [120]

      Doering, W. v. E.; Laber, G.; Vonderwahl, R.; Chamberlain, N. F.; Williams, R. B. J. Am. Chem. Soc. 1956, 78, 5448.  doi: 10.1021/ja01601a080

    121. [121]

      Williams, R. V. Chem. Rev. 2001, 101, 1185.  doi: 10.1021/cr9903149

    122. [122]

      Zhang, S.; Wei, J.; Zhan, M.; Luo, Q.; Wang, C.; Zhang, W. X.; Xi, Z. J. Am. Chem. Soc. 2012, 134, 11964.  doi: 10.1021/ja305581f

    123. [123]

      Chen, Z.; King, R. B. Chem. Rev. 2005, 105, 3613.  doi: 10.1021/cr0300892

    124. [124]

      Jiao, H.; Schleyer, P. v. R. Angew. Chem., Int. Ed. 1993, 32, 1763.  doi: 10.1002/(ISSN)1521-3773

    125. [125]

      Jiao, H.; Schleyer, P. v. R. J. Chem. Soc., Perkin Trans. 2 1994, 407.
       

    126. [126]

      Ajami, D.; Oeckler, O.; Simon, A.; Herges, R. Nature 2003, 426, 819.  doi: 10.1038/nature02224

    127. [127]

      Kawase, T.; Oda, M. Angew. Chem., Int. Ed. 2004, 43, 4396.  doi: 10.1002/(ISSN)1521-3773

    128. [128]

      Dewar, M. J. S. Bull. Soc. Chim. Belg. 1979, 88, 957.
       

    129. [129]

      Baeyer, A. Chem. Ber. 1885, 18, 2269.  doi: 10.1002/(ISSN)1099-0682

    130. [130]

      Schleyer, P. V. R. In Substituent Effects in Radical Chemistry, Eds.:Viehe, H. G.; Janousek, Z.; Merenyi, R., Reidel, Dordrecht, 1986, pp. 69~81.

    131. [131]

      Benson, S. W.; Cruickshank, F. R.; Golden, D. M.; Haugen, G. R.; O'Neal, H. E.; Rodgers, A. S.; Shaw, R.; Walsh, R. Chem. Rev. 1969, 69, 279.  doi: 10.1021/cr60259a002

    132. [132]

      Wu, W.; Ma, B.; Schleyer, P. v. R.; Mo, Y. Chem. Eur. J. 2009, 15, 9730.  doi: 10.1002/chem.v15:38

    133. [133]

      Havenith, R. W. A.; De Proft, F.; Fowler, P. W. Geerlings, P. Chem. Phys. Lett. 2005, 407, 391.  doi: 10.1016/j.cplett.2005.03.099

    134. [134]

      Zhu, C.; Zhou, X.; Xing, H.; An, K.; Zhu, J.; Xia, H. Angew. Chem., Int. Ed. 2015, 54, 3102.  doi: 10.1002/anie.201411220

    135. [135]

      Gund, P. J. Chem. Edu. 1972, 49, 100.  doi: 10.1021/ed049p100

    136. [136]

      Zhai, H. J.; Averkiev, B. B.; Zubarev, D. Y.; Wang, L. S.; Boldyrev, A. I. Angew. Chem., Int. Ed. 2007, 46, 4277.  doi: 10.1002/(ISSN)1521-3773

    137. [137]

      Schleyer, P. V. R.; Wu, J. I.; Cossío, F. P.; Fernández, I. Chem. Soc. Rev. 2014, 43, 4909.  doi: 10.1039/C4CS00012A

    138. [138]

      Rzepa, H. S.; Taylor, K. R. J. Chem. Soc., Perkin Trans. 2 2002, 1499.
       

    139. [139]

      Sommerfeld, T. J. Am. Chem. Soc. 2002, 124, 1119.  doi: 10.1021/ja012013y

    140. [140]

      Harada, N.; Ono, H.; Nishiwaki, T.; Uda, H. J. Chem. Soc., Chem. Commun. 1991, 24, 1753.
       

  • 加载中
    1. [1]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    2. [2]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    3. [3]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    4. [4]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    5. [5]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    6. [6]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    7. [7]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    10. [10]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    11. [11]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    12. [12]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    13. [13]

      Yonghui Wang Weilin Chen Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102

    14. [14]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    15. [15]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    16. [16]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    17. [17]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    18. [18]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    19. [19]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    20. [20]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

Metrics
  • PDF Downloads(890)
  • Abstract views(24604)
  • HTML views(5920)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return