Citation: Li Zhenyi, Hu Xiaoyu, Jiang Juli, Zhang Dongmei, Xiao Shoujun, Lin Chen, Wang Leyong. Recent Advances in Closed-Loop and Smart Insulin Delivery Systems[J]. Chinese Journal of Organic Chemistry, ;2018, 38(1): 29-39. doi: 10.6023/cjoc201708065 shu

Recent Advances in Closed-Loop and Smart Insulin Delivery Systems

  • Corresponding author: Lin Chen, linchen@nju.edu.cn
  • Received Date: 31 August 2017
    Revised Date: 19 September 2017
    Available Online: 26 January 2017

    Fund Project: the National Natural Science Foundation of China 21572101the National Natural Science Foundation of China 21672102Project supported by the National Natural Science Foundation of China (Nos. 21672102, 21572101)

Figures(6)

  • Insulin is a commonly prescribed drug for the treatment of type Ⅰ and type Ⅱ diabetes. As for the efficiency in controlling blood glucose level, insulin therapy is one of the most effective treatments for diabetes. The current administration route of insulin is mainly through subcutaneous injection, which leads to many undesirable side effects such as pain, local tissue necrosis or infection, and nerve damage. Recently, various closed-loop and smart insulin delivery systems have been developed based on the emerging nanotechnologies. Recent progress in the construction of closed-loop and smart insulin delivery system, which mainly focuses on the response mechanism, different strategies for fabricating the carrier matrix, and the regulation principle of the smart insulin release is described. Advantages and drawbacks of the current insulin delivery systems are also discussed, along with the opportunities and challenges in future.
  • 加载中
    1. [1]

      (a) Stumvoll, M.; Goldstein, B. J.; van Haeften, T. W. Lancet 2005, 365, 1333.
      (b) Atkinson, M. A.; Eisenbarth, G. S. Lancet 2001, 358, 221.

    2. [2]

      (a) Bach, J. F. Endocr. Rev. 1994, 15, 516.
      (b) Eisenbarth, G. S.; Flier, J. S.; Cahill, G. N. Engl. J. Med. 1986, 314, 1360.
      (c) Tisch, R.; McDevitt, H. Cell 1996, 85, 291.

    3. [3]

      (a) Concannon, P.; Rich, S. S.; Nepom, G. T. N. Engl. J. Med. 2009, 360, 1646.
      (b) Daneman, D. Lancet 2006, 367, 847.
      (c) Davies, J. L.; Kawaguchi, Y.; Bennett, S. T.; Copeman, J. B.; Cordell, H. J.; Pritchard, L. E.; Reed, P. W.; Gough, S. C. L.; Jenkins, S. C.; Palmer, S. M.; Balfour, K. M.; Rowe, B. R.; Farrall, M.; Barnett, A. H.; Bain, S. C.; Todd, J. A. Nature 1994, 371, 130.

    4. [4]

      (a) Boden, G.; Shulman, G. I. Eur. J. Clin. Invest. 2002, 32, 14.
      (b) Sturnvoll, M.; Goldstein, B. J.; van Haeften, T. W. Endocr. Res. 2007, 32, 19.

    5. [5]

      (a) Hamaty, M. Cleve. Clin. J. Med. 2011, 78, 332.
      (b) Hayward, R. A.; Manning, W. G.; Kaplan, S. H.; Wagner, E. H.; Greenfield, S. J. Am. Med. Assoc. 1997, 278, 1663.

    6. [6]

      (a) Owens, D. R.; Zinman, B.; Bolli, G. B. Lancet 2001, 358, 739.
      (b) Gualandi-Signorini, A. M.; Giorgi, G. Eur. Rev. Med. Pharmacol. Sci. 2001, 5, 73.

    7. [7]

      Langguth, P.; Bohner, V.; Heizmann, J.; Merkle, H. P.; Wolffram, S.; Amidon, G. L.; Yamashita, S. J. Controlled Release 1997, 46, 39.  doi: 10.1016/S0168-3659(96)01586-6

    8. [8]

      (a) Heinemann, L.; Pfutzner, A.; Heise, T. Curr. Pharm. Des. 2001, 7, 1327.
      (b) Owens, D. R. Nat. Rev. Drug Discovery 2002, 1, 529.

    9. [9]

      (a) Buzasi, K.; Sapi, Z.; Jermendy, G. Diabetes Res. Clin. Pract. 2011, 94, E34.
      (b) Chantelau, E.; Spraul, M.; Muhlhauser, I.; Gause, R.; Berger, M. Diabetologia 1989, 32, 421.
      (c) Richardson, T.; Kerr, D. Am. J. Clin. Dermatol. 2003, 4, 661.

    10. [10]

      (a) Jeandidier, N.; Boivin, S. Adv. Drug Delivery Rev. 1999, 35, 179.
      (b) Wu, W.; Zhou, S. Macromol. Biosci. 2013, 13, 1464.
      (c) Bratlie, K. M.; York, R. L.; Invernale, M. A.; Langer, R.; Anderson, D. G. Adv. Healthcare Mater. 2012, 1, 267.
      (d) Ravaine, V.; Ancla, C.; Catargi, B. J. Controlled Release 2008, 132, 2.

    11. [11]

    12. [12]

      Gao, L.; Wang, T.; Jia, K.; Wu, X.; Yao, C.; Shao, W.; Zhang, D.; Hu, X.-Y.; Wang, L. Chem.-Eur. J. 2017, 23, 6605.  doi: 10.1002/chem.v23.27

    13. [13]

      Mo, R.; Jiang, T.; Di, J.; Tai, W.; Gu, Z. Chem. Soc. Rev. 2014, 43, 3595.  doi: 10.1039/c3cs60436e

    14. [14]

      Bankar, S. B.; Bule, M. V.; Singhal, R. S.; Ananthanarayan, L. Biotechnol. Adv. 2009, 27, 489.  doi: 10.1016/j.biotechadv.2009.04.003

    15. [15]

      (a) Steiner, M.-S.; Duerkop, A.; Wolfbeis, O. S. Chem. Soc. Rev. 2011, 40, 4805.
      (b) Wu, Q.; Wang, L.; Yu, H.; Wang, J.; Chen, Z. Chem. Rev. 2011, 111, 7855.

    16. [16]

      (a) Gordijo, C. R.; Koulajian, K.; Shuhendler, A. J.; Bonifacio, L. D.; Huang, H. Y.; Chiang, S.; Ozin, G. A.; Giacca, A.; Wu, X. Y. Adv. Funct. Mater. 2011, 21, 73.
      (b) Zhao, W.; Zhang, H.; He, Q.; Li, Y.; Gu, J.; Li, L.; Li, H.; Shi, J. Chem. Commun. 2011, 47, 9459.

    17. [17]

      Gordijo, C. R.; Shuhendler, A. J.; Wu, X. Y. Adv. Funct. Mater. 2010, 20, 1404.  doi: 10.1002/adfm.200901581

    18. [18]

      Kim, M. Y.; Kim, J. ACS Biomater. Sci Eng. 2017, 3, 572.  doi: 10.1021/acsbiomaterials.6b00716

    19. [19]

      Gu, Z.; Dang, T. T.; Ma, M.; Tang, B. C.; Cheng, H.; Jiang, S.; Dong, Y.; Zhang, Y.; Anderson, D. G. ACS Nano 2013, 7, 6758.  doi: 10.1021/nn401617u

    20. [20]

      Tai, W.; Mo, R.; Di, J.; Subramanian, V.; Gu, X.; Buse, J. B.; Gu, Z. Biomacromolecules 2014, 15, 3495.  doi: 10.1021/bm500364a

    21. [21]

      Discher, D. E.; Ahmed, F. Annu. Rev. Biomed. Eng. 2006, 8, 323.  doi: 10.1146/annurev.bioeng.8.061505.095838

    22. [22]

      Napoli, A.; Boerakker, M. J.; Tirelli, N.; Nolte, R. J. M.; Sommerdijk, N.; Hubbell, J. A. Langmuir 2004, 20, 3487.  doi: 10.1021/la0357054

    23. [23]

      (a) Kohen, R. Biomed. Pharmacother. 1999, 53, 181.
      (b) Liu, Y.; Du, J.; Yan, M.; Lau, M. Y.; Hu, J.; Han, H.; Yang, O. O.; Liang, S.; Wei, W.; Wang, H.; Li, J.; Zhu, X.; Shi, L.; Chen, W.; Ji, C.; Lu, Y. Nat. Nanotechnol. 2013, 8, 187.

    24. [24]

      Hu, X.; Yu, J.; Qian, C.; Lu, Y.; Kahkoska, A. R.; Xie, Z.; Jing, X.; Buse, J. B.; Gu, Z. ACS Nano 2017, 11, 613.  doi: 10.1021/acsnano.6b06892

    25. [25]

      Veiseh, O.; Tang, B. C.; Whitehead, K. A.; Anderson, D. G.; Langer, R. Nat. Rev. Drug Discovery 2015, 14, 45.
       

    26. [26]

      (a) Donnelly, R. F.; Singh, T. R. R.; Woolfson, A. D. Drug Delivery 2010, 17, 187.
      (b) Yang, S.; Wu, F.; Liu, J.; Fan, G.; Welsh, W.; Zhu, H.; Jin, T. Adv. Funct. Mater. 2015, 25, 4633.

    27. [27]

      (a) Harvey, A. J.; Kaestner, S. A.; Sutter, D. E.; Harvey, N. G.; Mikszta, J. A.; Pettis, R. J. Pharm. Res. 2011, 28, 107.
      (b) Heo, Y. J.; Shibata, H.; Okitsu, T.; Kawanishi, T.; Takeuchi, S. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 13399.

    28. [28]

      (a) Krohn, K. A.; Link, J. M.; Mason, R. P. J. Nucl. Med. 2008, 49, 129S.
      (b) Nunn, A.; Linder, K.; Strauss, H. W. Eur. J. Nucl. Med. 1995, 22, 265.

    29. [29]

      (a) Edwards, D. I. J. Antimicrob. Chemother. 1993, 31, 9.
      (b) Takasawa, M.; Moustafa, R. R.; Baron, J.-C. Stroke 2008, 39, 1629.

    30. [30]

      Yu, J.; Zhang, Y.; Ye, Y.; DiSanto, R.; Sun, W.; Ranson, D.; Ligler, F. S.; Buse, J. B.; Gu, Z. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 8260.  doi: 10.1073/pnas.1505405112

    31. [31]

      Yu, J.; Qian, C.; Zhang, Y.; Cui, Z.; Zhu, Y.; Shen, Q.; Ligler, F. S.; Buse, J. B.; Gu, Z. Nano Lett. 2017, 17, 733.  doi: 10.1021/acs.nanolett.6b03848

    32. [32]

      Ye, T.; Bai, X.; Jiang, X.; Wu, Q.; Chen, S.; Qu, A.; Huang, J.; Shen, J.; Wu, W. Polym. Chem. 2016, 7, 2847.  doi: 10.1039/C6PY00179C

    33. [33]

      Lorand, J. P.; Edwards, J. O. J. Org. Chem. 1959, 24, 769.  doi: 10.1021/jo01088a011

    34. [34]

      Preinerstorfer, B.; Laemmerhofer, M.; Lindner, W. J. Sep. Sci. 2009, 32, 1673.  doi: 10.1002/jssc.v32:10

    35. [35]

      (a) Miyake, K.; Tanaka, T.; McNeil, P. L. PLoS One 2007, 2.
      (b) Vaz, A. F. M.; Souza, M. P.; Vieira, L. D.; Aguiar, J. S.; Silva, T. G.; Medeiros, P. L.; Melo, A. M. M. A.; Silva-Lucca, R. A.; Santana, L. A.; Oliva, M. L. V.; Perez, K. R.; Cuccovia, I. M.; Coelho, L. C. B. B.; Correia, M. T. S. Radiat. Phys. Chem. 2013, 85, 218.

    36. [36]

      Huang, Y.-J.; Ouyang, W.-J.; Wu, X.; Li, Z.; Fossey, J. S.; James, T. D.; Jiang, Y.-B. J. Am. Chem. Soc. 2013, 135, 1700.  doi: 10.1021/ja311442x

    37. [37]

      (a) Van den Berghe, G.; Wilmer, A.; Hermans, G.; Meersseman, W.; Wouters, P. J.; Milants, I.; Van Wijngaerden, E.; Bobbaers, H.; Bouillon, R. N. Engl. J. Med. 2006, 354, 449.
      (b) Van den Berghe, G.; Wouters, P.; Weekers, F.; Verwaest, C.; Bruyninckx, F.; Schetz, M.; Vlasselaers, D.; Ferdinande, P.; Lauwers, P.; Bouillon, R. N. Engl. J. Med. 2001, 345, 1359.

    38. [38]

      Wu, W.; Mitra, N.; Yan, E. C. Y.; Zhou, S. ACS Nano 2010, 4, 4831.  doi: 10.1021/nn1008319

    39. [39]

      (a) Alexeev, V. L.; Sharma, A. C.; Goponenko, A. V.; Das, S.; Lednev, I. K.; Wilcox, C. S.; Finegold, D. N.; Asher, S. A. Anal. Chem. 2003, 75, 2316.
      (b) Zhang, C.; Losego, M. D.; Braun, P. V. Chem. Mater. 2013, 25, 3239.

    40. [40]

      Shiino, D.; Murata, Y.; Kataoka, K.; Koyama, Y.; Yokoyama, M.; Okano, T.; Sakurai, Y. Biomaterials 1994, 15, 121.  doi: 10.1016/0142-9612(94)90261-5

    41. [41]

      Zhang, C.; Cano, G. G.; Braun, P. V. Adv. Mater. 2014, 26, 5678.  doi: 10.1002/adma.201401710

    42. [42]

      Holtz, J. H.; Asher, S. A. Nature 1997, 389, 829.  doi: 10.1038/39834

    43. [43]

      Goponenko, A. V.; Asher, S. A. J. Am. Chem. Soc. 2005, 127, 10753.  doi: 10.1021/ja051456p

    44. [44]

      Wang, B.; Ma, R.; Liu, G.; Liu, X.; Gao, Y.; Shen, J.; An, Y.; Shi, L. Macromol. Rapid Commun. 2010, 31, 1628.  doi: 10.1002/marc.201000164

    45. [45]

      Ma, R.; Yang, H.; Li, Z.; Liu, G.; Sun, X.; Liu, X.; An, Y.; Shi, L. Biomacromolecules 2012, 13, 3409.  doi: 10.1021/bm3012715

    46. [46]

      Yang, H.; Sun, X.; Liu, G.; Ma, R.; Li, Z.; An, Y.; Shi, L. Soft Matter 2013, 9, 8589.  doi: 10.1039/c3sm51538a

    47. [47]

      Yao, Y.; Zhao, L.; Yang, J.; Yang, J. Biomacromolecules 2012, 13, 1837.  doi: 10.1021/bm3003286

    48. [48]

      (a) Cao, Y.; Zou, X.; Xiong, S.; Li, Y.; Shen, Y.; Hu, X.; Wang, L. Chin. J. Chem. 2015, 33, 329.
      (b) Hu, X.-Y.; Jia, K.; Cao, Y.; Li, Y.; Qin, S.; Zhou, F.; Lin, C.; Zhang, D.; Wang, L. Chem.-Eur. J. 2015, 21, 1208.
      (c) Jie, K.; Zhou, Y.; Yao, Y.; Huang, F. Chem. Soc. Rev. 2015, 44, 3568.

    49. [49]

      (a) Chi, X.; Yu, G.; Ji, X.; Li, Y.; Tang, G.; Huang, F. ACS Macro Lett. 2015, 4, 996.
      (b) Li, B.; Meng, Z.; Li, Q.; Huang, X.; Kang, Z.; Dong, H.; Chen, J.; Sun, J.; Dong, Y.; Li, J.; Jia, X.; Sessler, J. L.; Meng, Q.; Li, C. Chem. Sci. 2017, 8, 4458.

    50. [50]

      (a) Li, C.; Shu, X.; Li, J.; Chen, S.; Han, K.; Xu, M.; Hu, B.; Yu, Y.; Jia, X. J. Org. Chem. 2011, 76, 8458.
      (b) Li, C.; Xu, Q.; Li, J.; Yao, F.; Jia, X. Org. Biomol. Chem. 2010, 8, 1568.

    51. [51]

      (a) Cheng, C.; Zhang, X.; Xiang, J.; Wang, Y.; Zheng, C.; Lu, Z.; Li, C. Soft Matter 2012, 8, 765.
      (b) Wang, Y.; Zhang, X.; Han, Y.; Cheng, C.; Li, C. Carbohydr. Polym. 2012, 89, 124.

    52. [52]

      Guo, Q.; Wu, Z.; Zhang, X.; Sun, L.; Li, C. Soft Matter 2014, 10, 911.  doi: 10.1039/c3sm52485j

    53. [53]

      Chang, Y.-J.; Liu, X.-Z.; Zhao, Q.; Yang, X.-H.; Wang, K.-M.; Wang, Q.; Lin, M.; Yang, M. Chin. Chem. Lett. 2015, 26, 1203.  doi: 10.1016/j.cclet.2015.08.005

    54. [54]

      (a) Lee, C.-H.; Cheng, S.-H.; Wang, Y.; Chen, Y.-C.; Chen, N.-T.; Souris, J.; Chen, C.-T.; Mou, C.-Y.; Yang, C.-S.; Lo, L.-W. Adv. Funct. Mater. 2009, 19, 215.
      (b) Slowing, I. I.; Wu, C.-W.; Vivero-Escoto, J. L.; Lin, V. S. Y. Small 2009, 5, 57.
      (c) Taylor, K. M. L.; Kim, J. S.; Rieter, W. J.; An, H.; Lin, W.; Lin, W. J. Am. Chem. Soc. 2008, 130, 2154.

    55. [55]

      (a) Charles, M. A.; Fanska, R.; Schmid, F. G.; Forsham, P. H.; Grodsky, G. M. Science 1973, 179, 569.
      (b) Dyachok, O.; Idevall-Hagren, O.; Sagetorp, J.; Tian, G.; Wuttke, A.; Arrieumerlou, C.; Akusjarvi, G.; Gylfe, E.; Tengholm, A. Cell Metabolism 2008, 8, 26.

    56. [56]

      Tengholm, A. Upsala J. Med. Sci. 2012, 117, 355.  doi: 10.3109/03009734.2012.724732

    57. [57]

      Zhao, Y.; Trewyn, B. G.; Slowing, I. I.; Lin, V. S. Y. J. Am. Chem. Soc. 2009, 131, 8398.  doi: 10.1021/ja901831u

    58. [58]

      Geijtenbeek, T. B. H.; Gringhuis, S. I. Nat. Rev. Immunol. 2009, 9, 465.  doi: 10.1038/nri2569

    59. [59]

      Sharon, N.; Lis, H. Science 1972, 177, 949.  doi: 10.1126/science.177.4053.949

    60. [60]

      (a) Brownlee, M.; Cerami, A. Science 1979, 206, 1190.
      (b) Seminoff, L. A.; Gleeson, J. M.; Zheng, J.; Olsen, G. B.; Holmberg, D.; Mohammad, S. F.; Wilson, D.; Kim, S. W. Int. J. Pharm. 1989, 54, 251.

    61. [61]

      Yin, R.; Tong, Z.; Yang, D.; Nie, J. Int. J. Biol. Macromol. 2011, 49, 1137.  doi: 10.1016/j.ijbiomac.2011.09.014

    62. [62]

      Wu, S.; Huang, X.; Du, X. Angew. Chem., Int. Ed. 2013, 52, 5580.  doi: 10.1002/anie.201300958

    63. [63]

      (a) Brogden, R. N.; Heel, R. C. Drugs 1987, 34, 350.
      (b) Reichard, P.; Nilsson, B. Y.; Rosenqvist, U. N. Engl. J. Med. 1993, 329, 304.

    64. [64]

      Jain, S.; Hreczuk-Hirst, D. H.; McCormack, B.; Mital, M.; Epenetos, A.; Laing, P.; Gregoriadis, G. Biochim. Biophys. Acta, Gen. Subj. 2003, 1622, 42.  doi: 10.1016/S0304-4165(03)00116-8

    65. [65]

      Bergenstal, R. M.; Rosenstock, J.; Arakaki, R. F.; Prince, M. J.; Qu, Y.; Sinha, V. P.; Howey, D. C.; Jacober, S. J. Diabetes Care 2012, 35, 2140.  doi: 10.2337/dc12-0060

  • 加载中
    1. [1]

      Sirui Xin Jiayin Zhou Kin Shing Chan . Smelling Disease: E-nose. University Chemistry, 2024, 39(9): 141-145. doi: 10.3866/PKU.DXHX202309051

    2. [2]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    3. [3]

      Zhuoyue Guo Jinxin Guo . The Amazing Journey of Glucose. University Chemistry, 2026, 41(2): 279-285. doi: 10.12461/PKU.DXHX202502082

    4. [4]

      Hongling Liu Yue Xia Guang Xu Yafei Yang Chunhua Qu . Bitter Cold Medicine, Good for Healing. University Chemistry, 2025, 40(3): 328-332. doi: 10.12461/PKU.DXHX202405039

    5. [5]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    6. [6]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    7. [7]

      Tengyue ZHANGJingjing FENGZili LIANGJia′nan DAIJing MA . Optimization of C-doped BiVO4 performance for tetracycline degradation using response surface methodology-assisted orthogonal experiments. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2561-2574. doi: 10.11862/CJIC.20250104

    8. [8]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    9. [9]

      Ruoxi RUNJikai ZHULixia HANZhiyin XIAOXiujuan JIANGJing JIN . Red light-induced CO-release from manganese carbonyl complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2575-2583. doi: 10.11862/CJIC.20250132

    10. [10]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    11. [11]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    12. [12]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    13. [13]

      Jing Du Xi Yu Xiaofei Ma Wentao Zhao . Artificial Intelligence & Chemistry Course Construction. University Chemistry, 2024, 39(11): 65-71. doi: 10.12461/PKU.DXHX202403072

    14. [14]

      Weigang Zhu Jianfeng Wang Qiang Qi Jing Li Zhicheng Zhang Xi Yu . Curriculum Development for Cheminformatics and AI-Driven Chemistry Theory toward an Intelligent Era. University Chemistry, 2025, 40(9): 34-42. doi: 10.12461/PKU.DXHX202412002

    15. [15]

      Jiangjuan Shao Xuan Li Jingdan Weng Xiaolei Chen Fei Xu Yulu Ma Nianguang Li Shizhong Zheng . Improvement in the Experimental Teaching Design of Physical and Chemical Identification and Quantification of Mineral Drugs. University Chemistry, 2024, 39(10): 137-142. doi: 10.3866/PKU.DXHX202312079

    16. [16]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    17. [17]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    18. [18]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    19. [19]

      Liangjun Chen Yu Zhang Zhicheng Zhang Yongwu Peng . AI-Empowering Reform in University Chemistry Education: Practical Exploration of Cultivating Informationization and Intelligent Literacy. University Chemistry, 2025, 40(9): 220-227. doi: 10.12461/PKU.DXHX202503124

    20. [20]

      Tongqi Ye Qi Wang Yuewen Ye Yanqing Wang Hongyang Zhou Xianghua Kong . Reflection on the Reform of Physical Chemistry Teaching under the Background of “Intelligent Chemical Engineering”. University Chemistry, 2024, 39(3): 167-173. doi: 10.3866/PKU.DXHX202308116

Metrics
  • PDF Downloads(15)
  • Abstract views(6124)
  • HTML views(384)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return