Citation: Gao Yuzhen, Tang Guo, Zhao Yufen. Recent Advances of Phosphorus-Centered Radical Promoted Difunctionalization of Unsaturated Carbon-Carbon Bonds[J]. Chinese Journal of Organic Chemistry, ;2018, 38(1): 62-74. doi: 10.6023/cjoc201708023 shu

Recent Advances of Phosphorus-Centered Radical Promoted Difunctionalization of Unsaturated Carbon-Carbon Bonds

  • Corresponding author: Zhao Yufen, yfzhao@xmu.edu.cn
  • Received Date: 11 August 2017
    Revised Date: 31 August 2017
    Available Online: 8 January 2017

    Fund Project: the National Natural Science Foundation of China 21232005the National Postdoctoral Program for Innovative Talents BX201700244the National Basic Research Program of China 2013CB910700Project supported by the National Natural Science Foundation of China (Nos. 21232005, 21375113), the National Basic Research Program of China (No. 2013CB910700), the Fundamental Research Funds for the Central Universities (No. 20720160030), the National Postdoctoral Program for Innovative Talents (No. BX201700244)the Fundamental Research Funds for the Central Universities 20720160030the National Natural Science Foundation of China 21375113

Figures(17)

  • The scientists have been working on developing more efficient and green ways to synthesize organophosphorus compounds as they have broad utilities such as reagents for chemical reactions, photovoltaic materials, flame retardants, biologically active molecules and so on. The difunctionalization reactions between P-center radicals and unsaturated compounds provide powerful methods for the synthesis of organophosphorus compounds in least and concise steps. This review will summarize the recent development in this area on the basis of different types of P-centered radical initiators.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      For selected reviews on reactions involving P-center radical, see:
      (a) Pan, X.-Q.; Zou, J.-P.; Yi, W.-B.; Zhang, W. Tetrahedron 2015, 71, 7481.
      (b) Gao, Y.; Tang, G.; Zhao, Y. Phosphorus, Sulfur Silicon Relat. Elem. 2017, 192, 589.
      (c) Leca, D.; Fensterbank, L.; Lac te, E.; Malacria, M. Chem. Soc. Rev. 2005, 34, 858.

    4. [4]

      (a) Parsons, A. F.; Sharp, D. J.; Taylor, P. Synlett 2005, 2981.
      (b) Jessop, C. M.; Parsons, A. F.; Routledge, A.; Irvine, D. J. Eur. J. Org. Chem. 2006, 1547.

    5. [5]

      Hirai, T.; Han, L.-B. Org. Lett. 2007, 9, 53.  doi: 10.1021/ol062505l

    6. [6]

      Mondal, M.; Bora, U. RSC Adv. 2013, 3, 18716.  doi: 10.1039/c3ra42480d

    7. [7]

      Pan, X.-Q.; Zou, J.-P.; Zhang, G.-L.; Zhang, W. Chem. Commun. 2010, 46, 1721.  doi: 10.1039/b925951a

    8. [8]

      Zhou, J.; Zhang, G.-L.; Zou, J.-P.; Zhang, W. Eur. J. Org. Chem. 2011, 3412.

    9. [9]

      Li, D.-P.; Pan, X.-Q.; An, L.-T.; Zou, J.-P.; Zhang, W. J. Org. Chem. 2014, 79, 1850.  doi: 10.1021/jo402556a

    10. [10]

      Pan, X.-Q.; Wang, L.; Zou, J.-P.; Zhang, W. Chem. Commun. 2011, 47, 7875.  doi: 10.1039/c1cc12343b

    11. [11]

      Gao, Y.; Wu, J.; Xu, J.; Zhang, P.; Tang, G.; Zhao, Y. RSC Adv. 2014, 4, 51776.  doi: 10.1039/C4RA10593A

    12. [12]

      Zhou, S.-F.; Li, D.-P.; Liu, K.; Zou, J.-P.; Asekun, O. T. J. Org. Chem. 2015, 80, 1214.  doi: 10.1021/jo5023298

    13. [13]

      Xu, J.; Li, X.; Gao, Y.; Zhang, L.; Chen, W.; Fang, H.; Tang, G.; Zhao, Y. Chem. Commun. 2015, 51, 11240.  doi: 10.1039/C5CC03995A

    14. [14]

      Gao, Y.; Li, X.; Xu, J.; Wu, Y.; Chen, W.; Tang, G.; Zhao, Y. Chem. Commun. 2015, 51, 1605.  doi: 10.1039/C4CC07978G

    15. [15]

      Gao, Y.; Li, X.; Chen, W.; Tang, G.; Zhao, Y. J. Org. Chem. 2015, 80, 11398.  doi: 10.1021/acs.joc.5b02026

    16. [16]

      (a) Gao, Y.; Wu, J.; Xu, J.; Wang, X.; Tang, G.; Zhao, Y. Asian J. Org. Chem. 2014, 3, 691.
      (b) Li, Y.; Qiu, G.; Ding, Q.; Wu, J. Tetrahedron 2014, 70, 4652.
      (c) Zhang, B.; Daniliuc, C. G.; Studer, A. Org. Lett. 2014, 16, 250.
      (d) Cao, J.-J.; Zhu, T.-H.; Gu, Z.-Y.; Hao, W.-J.; Wang, S.-Y.; Ji, S.-J. Tetrahedron 2014, 70, 6985.
      (e) Li, C.-X.; Tu, D.-S.; Yao, R.; Yan, H.; Lu, C.-S. Org. Lett. 2016, 18, 4928.

    17. [17]

      Zhang, C.; Li, Z.; Zhu, L.; Yu, L.; Wang, Z.; Li, C. J. Am. Chem. Soc. 2013, 135, 14082.  doi: 10.1021/ja408031s

    18. [18]

      Li, Y.-M.; Sun, M.; Wang, H.-L.; Tian, Q.-P.; Yang, S.-D. Angew. Chem., Int. Ed. 2013, 52, 3972.  doi: 10.1002/anie.v52.14

    19. [19]

      Li, Y.-M.; Shen, Y.; Chang, K.-J.; Yang, S.-D. Tetrahedron 2014, 70, 1991.  doi: 10.1016/j.tet.2014.01.065

    20. [20]

      Zhang, H.; Gu, Z.; Li, Z.; Pan, C.; Li, W.; Hu, H.; Zhu, C. J. Org. Chem. 2016, 81, 2122.  doi: 10.1021/acs.joc.5b01879

    21. [21]

      Zheng, J.; Zhang, Y.; Wang, D.; Cui, S. Org. Lett. 2016, 18, 1768.  doi: 10.1021/acs.orglett.6b00481

    22. [22]

      Kong, W.; Merino, E.; Nevado, C. Angew. Chem., Int. Ed. 2014, 53, 5078.
       

    23. [23]

      Zhao, J.; Li, P.; Li, X.; Xia, C.; Li, F. Chem. Commun. 2016, 52, 3661.  doi: 10.1039/C5CC09730D

    24. [24]

      Wang, N.; Li, L.; Li, Z.-L.; Yang, N.-Y.; Guo, Z.; Zhang, H.-X.; Liu, X.-Y. Org. Lett. 2016, 18, 6026.  doi: 10.1021/acs.orglett.6b02960

    25. [25]

      Liu, J.; Zhao, S.; Song, W.; Li, R.; Guo, X.; Zhuo, K.; Yue, Y. Adv. Synth. Catal. 2017, 359, 609.  doi: 10.1002/adsc.v359.4

    26. [26]

      Xu, J.; Yu, X.; Song, Q. Org. Lett. 2017, 19, 980.  doi: 10.1021/acs.orglett.6b03713

    27. [27]

      Chen, S.; Zhang, P.; Shu, W.; Gao, Y.; Tang, G.; Zhao, Y. Org. Lett. 2016, 18, 5712.  doi: 10.1021/acs.orglett.6b02941

    28. [28]

      Zhang, H.; Li, W.; Zhu, C. J. Org. Chem. 2017, 82, 2199.  doi: 10.1021/acs.joc.6b02673

    29. [29]

      Hua, H.-L.; Zhang, B.-S.; He, Y.-T.; Qiu, Y.-F.; Wu, X.-X.; Xu, P.-F.; Liang, Y.-M. Org. Lett. 2016, 18, 216.  doi: 10.1021/acs.orglett.5b03329

    30. [30]

      Gao, Y.; Lu, G.; Zhang, P.; Zhang, L.; Tang, G.; Zhao, Y. Org. Lett. 2016, 18, 1242.  doi: 10.1021/acs.orglett.6b00056

    31. [31]

      Zhu, X.-T.; Zhao, Q.; Liu, F.; Wang, A.-F.; Cai, P.-J.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Chem. Commun. 2017, 53, 6828.  doi: 10.1039/C7CC01666B

    32. [32]

      Mi, X.; Wang, C.; Huang, M.; Zhang, J.; Wu, Y.; Wu, Y. Org. Lett. 2014, 16, 3356.  doi: 10.1021/ol5013839

    33. [33]

      Wang, L.-J.; Wang, A.-Q.; Xia, Y.; Wu, X.-X.; Liu, X.-Y.; Liang, Y.-M. Chem. Commun. 2014, 50, 13998.  doi: 10.1039/C4CC06923D

    34. [34]

      Zhou, Z.-Z.; Zheng, L.; Yan, X.-B.; Jin, D.-P.; He. Y.-T.; Liang, Y.-M. Org. Biomol. Chem. 2016, 14, 4507.  doi: 10.1039/C6OB00505E

    35. [35]

      Zhou, Z.-Z.; Jin, D.-P.; Li, L.-H.; He, Y.-T.; Zhou, P.-X.; Yan, X.-B.; Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2014, 16, 5616.  doi: 10.1021/ol502397f

    36. [36]

      (a) Unoh, Y.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed., 2013, 52, 12975.
      (b) Chen, Y.-R.; Duan, W.-L. J. Am. Chem. Soc. 2013, 135, 16754.
      (c) Zhang, P.; Gao, Y.; Zhang, L.; Li, Z.; Liu, Y.; Tang, G.; Zhao, Y. Adv. Synth. Catal. 2016, 358, 138.
      (d) Ma, D.; Chen, W.; Hu, G.; Zhang, Y.; Gao, Y.; Yin, Y.; Zhao, Y. Green Chem. 2016, 18, 3522.
      (e) Quint, V.; Morlet-Savary, F.; Lohier, J.-F.; Lalevée, J.; Gaumont, A.-C.; Lakhdar, S. J. Am. Chem. Soc. 2016, 138, 7436.

    37. [37]

      Hu, G.; Zhang, Y.; Su, J.; Li, Z.; Gao, Y.; Zhao, Y. Org. Biomol. Chem. 2015, 13, 8221.  doi: 10.1039/C5OB00959F

    38. [38]

      Wei, W.; Ji, J.-X. Angew. Chem., Int. Ed. 2011, 50, 9097.  doi: 10.1002/anie.201100219

    39. [39]

      Zhou, Y.; Zhou, M.; Chen, M.; Su, J.; Du, J.; Song, Q. RSC Adv. 2015, 5, 103977.  doi: 10.1039/C5RA23950H

    40. [40]

      Zhou, Y.; Rao, C.; Mai, S.; Song, Q. J. Org. Chem. 2016, 81, 2027.  doi: 10.1021/acs.joc.5b02887

    41. [41]

      (a) Zhou, M.; Chen, M.; Zhou, Y.; Yang, K.; Su, J.; Du, J.; Song, Q. Org. Lett. 2015, 17, 1786.
      (b) Yi, N.; Wang, R.; Zou, H.; He, W.; Fu, W.; He, W. J. Org. Chem. 2015, 80, 5023.
      (c) Zhang, P.; Zhang, L.; Gao, Y.; Xu, J.; Fang, H.; Tang, G.; Zhao, Y. Chem. Commun. 2015, 51, 7839.
      (d) Chen, X.; Li, X.; Chen, X.-L.; Qu, L.-B.; Chen, J.-Y.; Sun, K.; Liu, Z.-D.; Bi, W.-Z.; Xia, Y.-Y.; Wu, H.-T.; Zhao, Y.-F. Chem. Commun. 2015, 51, 3846.

    42. [42]

      Taniguchi, T.; Idota, A.; Yokoyama, S.; Ishibashi, H. Tetrahedron Lett. 2011, 52, 4768.  doi: 10.1016/j.tetlet.2011.07.026

    43. [43]

      Zhang, H.-Y.; Mao, L.-L.; Yang, B.; Yang, S.-D. Chem. Commun. 2015, 51, 4101.  doi: 10.1039/C4CC10267C

    44. [44]

      Li, Y.-M.; Wang, S.-S.; Yu, F.; Shen, Y.; Chang, K.-J. Org. Biomol. Chem. 2015, 13, 5376.  doi: 10.1039/C5OB00617A

    45. [45]

      Wu, J.; Gao, Y.; Zhao, X.; Zhang, L.; Chen, W.; Tang, G.; Zhao, Y. RSC Adv. 2016, 6, 303.  doi: 10.1039/C5RA22570A

    46. [46]

      Zhu, Y.-L.; Wang, D.-C.; Jiang, B.; Hao, W.-J.; Wei, P.; Wang, A.-F.; Qiu, J.-K.; Tu, S.-J. Org. Chem. Front. 2016, 3, 385.  doi: 10.1039/C5QO00430F

    47. [47]

      Liu, C.; Zhu, M.; Wei, W.; Yang, D.; Cui, H.; Liu, X.; Wang, H. Org. Chem. Front. 2015, 2, 1356.  doi: 10.1039/C5QO00208G

    48. [48]

      Zhang, P.; Zhang, L.; Gao, Y.; Tang, G.; Zhao, Y. RSC Adv. 2016, 6, 60922.  doi: 10.1039/C6RA11426A

    49. [49]

      (a) Dondoni, A.; Staderini, S.; Marra, A. Eur. J. Org. Chem. 2013, 5370.
      (b) Oparina, L. A.; Malysheva, S. F.; Gusarova, N. K.; Belogorlova, N. A.; Vysotskaya, O. V.; Stepanov, A. V.; Albanov, A. I.; Trofimov, B. A. Synthesis 2009, 3427.
      (c) Daeffler, C. S.; Grubbs, R. H. Org. Lett. 2011, 13, 6429.

    50. [50]

      (a) Peng, P.; Peng, L.; Wang, G.; Wang, F.; Luo, Y.; Lei, A. Org. Chem. Front. 2016, 3, 749.
      (b) Luo, K.; Chen, Y.-Z.; Yang, W.-C.; Zhu, J.; Wu, L. Org. Lett. 2016, 18, 452.

    51. [51]

      Liu, D.; Chen, J.-Q.; Wang, X.-Z.; Xu, P.-F. Adv. Synth. Catal. 2017, 359, 2773.  doi: 10.1002/adsc.v359.16

    52. [52]

      (a) Johnston, C. P.; Smith, R. T.; Allmendinger, S.; MacMillan, D. W. C. Nature 2016, 536, 322.
      (b) Zhang, W.; Wang, F.; McCann, S. D.; Wang, D.; Chen, P.; Stahl, S. S.; Liu, G. Science 2016, 353, 1014.

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    3. [3]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    6. [6]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    7. [7]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    8. [8]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    9. [9]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    10. [10]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    11. [11]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    12. [12]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    13. [13]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    14. [14]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    15. [15]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    16. [16]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    17. [17]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    18. [18]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    19. [19]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    20. [20]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

Metrics
  • PDF Downloads(167)
  • Abstract views(7034)
  • HTML views(1226)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return