Citation: Liao Yun, Zhu Lei, Yu Yinghua, Chen Gui, Huang Xueliang. N-Heterocycle Synthesis via Gold-Catalyzed Intermolecular Nitrene Transfer Reactions of Alkynes[J]. Chinese Journal of Organic Chemistry, ;2017, 37(11): 2785-2799. doi: 10.6023/cjoc201708021 shu

N-Heterocycle Synthesis via Gold-Catalyzed Intermolecular Nitrene Transfer Reactions of Alkynes

  • Corresponding author: Chen Gui, chengui@fjirsm.ac.cn Huang Xueliang, huangxl@fjirsm.ac.cn
  • Received Date: 11 August 2017
    Revised Date: 8 September 2017
    Available Online: 19 November 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21402197, 21502190), and the Natural Science Foundation of Fujian Province (No. 2017J01031)the National Natural Science Foundation of China 21402197the National Natural Science Foundation of China 21502190the Natural Science Foundation of Fujian Province 2017J01031

Figures(25)

  • N-Heterocyclic rings are versatile structural units that widely dispersed in a variety of natural products, biological active species, and photoelectric materials. They are also useful building blocks in synthetic community. This review mainly focused on recent progress on gold-catalyzed intermolecular nitrene transfer reactions with alkynes. This strategy complements the toolbox for the synthesis of multisubstituted N-heterocyclic compounds. Mechanistically, activated by a suitable gold catalyst, the specific alkyne could react with a nitrene precursor, providing the final N-heterocyclic compounds in highly efficient manner.
  • 加载中
    1. [1]

      (a) Pozharskii, A. F.; Soldatenkov, A. T.; Katritzky, A. R. Heterocycles in Life and Society, Wiley, New York, 1997.
      (b) Katritzky, A. R. Handbook of Heterocyclic Chemistry, Per-gamon Press, Oxford, 1985.
      (c) Balaban, A. T.; Oniciu, D. C.; Katritzky, A. R. Chem. Rev. 2004, 104, 2777.

    2. [2]

      Related reviews, see:(a) Fürstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410.
      (b) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180.
      (c) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351.
      (d) Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326.
      (e) Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208.
      (f) Hashmi, A. S. K. Angew. Chem., Int. Ed.2010, 49, 5232.
      (g) Xiao, J.; Li, X. Angew. Chem., Int. Ed. 2011, 50, 7226.
      (h) Friend, C. M.; Hashmi, A. S. K. Acc. Chem. Res. 2014, 47, 729.
      (i) Zhang, L. Acc. Chem. Res. 2014, 47, 877.
      (j) Yeom, H.-S.; Shin, S. Acc. Chem. Res. 2014, 47, 966.
      (k) Dorel, R.; Echavarren, A. M. Chem. Rev. 2015, 115, 9028.
      (l) Qian, D.; Zhang, J. Chem. Soc. Rev. 2015, 44, 677.
      (m) Davies, P. W.; Garzûn, M. Asian J. Org. Chem. 2015, 4, 694.
      (n) Huple, D. B.; Ghorpade, S.; Liu, R.-S. Adv. Synth. Catal. 2016, 358, 1348.
      (o) Pan, F.; Shu, C.; Ye, L.-W. Org. Biomol. Chem. 2016, 14, 9456.
      (p) Shu, C.; Li, L.; Tan, T.-D.; Yuan, D.-Q.; Ye, L.-W. Sci. Bull. 2017, 62, 352.

    3. [3]

      Recent related reviews, see:(a) Davies, P. W.; Garzûn, M. Asian J. Org. Chem. 2015, 4, 694.
      (b) Song, X.-R.; Qiu, Y.-F.; Liu, X.-Y.; Liang, Y.-M. Org. Bio-mol. Chem. 2016, 14, 11317.

    4. [4]

      (a) Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 11260.
      (b) Huo, Z.; Yamamoto, Y. Tetrahedron Lett. 2009, 50, 3651.
      (c) Wetzel, A.; Gagosz, F. Angew. Chem., Int. Ed. 2011, 50, 7354.
      (d) Lu, B.; Luo, Y.; Liu, L.; Ye, L.; Wang, Y.; Zhang, L. Angew. Chem., Int. Ed. 2011, 50, 8358.
      (e) Yan, Z.-Y.; Xiao, Y.; Zhang, L. Angew. Chem., Int. Ed. 2012, 51, 8624.
      (f) Xiao, Y.; Zhang, L. Org. Lett. 2012, 14, 4662.
      (g) Gronnier, C.; Boissonnat G.; Gagosz, F. Org. Lett. 2013, 15, 4234.
      (h) Prechter, A.; Henrion, G.; Bel, P. F.; Gagosz, F. Angew. Chem., Int. Ed. 2014, 53, 4959.
      (i) Shen, C.-H.; Pan, Y.; Yu, Y.-F.; Wang, Z.-S.; He, W.; Li, T.; Ye, L.-W. J. Organomet. Chem. 2015, 795, 63.
      (j) Li, N.; Wang, T. Y.; Gong, L. Z.; Zhang, L. Chem. Eur. J. 2015, 21, 3585.
      (k) Pan, Y.; Chen, G.-W.; Shen, C.-H.; He, W.; Ye, L.-W. Org. Chem. Front. 2016, 3, 491.
      (l) Li, N.; Lian, X. L.; Li, Y. H.; Wang, T. Y.; Han, Z. Y.; Zhang, L.; Gong, L. Z. Org. Lett. 2016, 18, 4178.
      (m) Lonca, G. H.; Tejo, C.; Chan, H. L.; Chiba, S.; Gagosz, F. Chem. Commun. 2017, 53, 736.
      (n) Zhang, X.-X.; Sun, X.-P.; Fan, H.; Li, P.; Lyu, C.; Rao, W.-D. Eur. J. Org. Chem. 2016, 25, 4265.
      (o) Zhang, X.-X.; Sun, X.-P.; Fan, H.; Lyu, C.; Li, P.; Zhang, H.-F.; Rao, W.-D. RSC Adv. 2016, 6, 56319.
      (p) Zhang, X.-X; Li, P.; Lyu, C.; Yong, W.-X.; Li, J.; Zhu, X.-B.; Rao, W.-D. Org. Biomol. Chem. 2017, 15, 6080.
      (q) González, J.; Santamaría, J.; Suárez-Sobrino, Á. L.; Ballesteros, A. Adv. Synth. Catal. 2016, 358, 1398.

    5. [5]

      Li, C.; Zhang, L. Org. Lett. 2011, 13, 1738.  doi: 10.1021/ol2002607

    6. [6]

      (a) Davies, P. W.; Cremonesi, A.; Dumitrescu, L. Angew. Chem., Int. Ed. 2011, 50, 8931.
      (b) Gillie, A. D.; Reddy, R. J.; Davies, P. W. Adv. Synth. Catal. 2016, 358, 226.

    7. [7]

      (a) Chatzopoulou, E.; Davies, P. W. Chem. Commun. 2013, 49, 8617.
      (b) Garzûn, M.; Davies, P. W. Org. Lett. 2014, 16, 4850.

    8. [8]

      Reddy, R. J.; Ball-Jones, M. P.; Davies, P. W. Angew. Chem., Int. Ed. 2017, 56, 13310..  doi: 10.1002/anie.201706850

    9. [9]

    10. [10]

      Sahani, R. L.; Liu, R.-S. Angew. Chem., Int. Ed. 2017, 56, 1026.  doi: 10.1002/anie.201610665

    11. [11]

      (a) Jin, H.; Huang, L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2016, 55, 794.
      (b) Jin, H.; Tian, B.; Song, X.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2016, 55, 12688.
      (c) Sahani, L.-R.; Liu, R.-S. Angew. Chem., Int. Ed. 2017, 56, 12736.

    12. [12]

      Chen, M.; Sun, N.; Chen, H.-Y.; Liu, Y.-H. Chem. Commun. 2016, 52, 6324.  doi: 10.1039/C6CC02776H

    13. [13]

      Zhao, Y.-Y.; Hu, Y.-C.; Wang, C.-X.; Li, X.-C.; Wan, B.-S. J. Org. Chem. 2017, 82, 3935.  doi: 10.1021/acs.joc.7b00076

    14. [14]

      Xu, W.; Wang, G.-N.; Sun, N.; Liu, Y.-H. Org. Lett. 2017, 19, 3307.  doi: 10.1021/acs.orglett.7b01469

    15. [15]

      Zeng, Z.-Y.; Jin, H.-M.; Xie, J.; Tian, B.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Org. Lett. 2017, 19, 1020.  doi: 10.1021/acs.orglett.7b00001

    16. [16]

      Zeng, Z.; Jin, H.; Song, X.; Wang, Q.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Chem. Commun. 2017, 53, 4304.  doi: 10.1039/C7CC00789B

    17. [17]

      Zhu, L.; Yu, Y.; Mao, Z.; Huang, X. Org. Lett. 2015, 17, 30.  doi: 10.1021/ol503172h

    18. [18]

      (a) Shu, C.; Wang, Y.-H.; Zhou, B.; Li, X.-L.; Ping, Y.-F.; Lu, X.; Ye, L.-W. J. Am. Chem. Soc. 2015, 137, 9567.
      (b) Shu, C.; Wang, Y.-H.; Shen, C.-H.; Ruan, P.-P.; Lu, X.; Ye, L.-W. Org. Lett. 2016, 18, 3254.
      (c) Shu, C.; Shen, C.-H.; Wang, Y.-H.; Li, L.; Li, T.; Lu, X.; Ye, L.-W. Org. Lett. 2016, 18, 4630.
      (d) Ruan, P.-P.; Li, H.-H.; Liu, X.; Zhang, T.; Zuo, S.-X.; Zhu, C.-Y.; Ye, L.-W. J. Org. Chem. 2017, 82, 9119.

    19. [19]

      Wu, Y.; Zhu, L.; Yu, Y.; Luo, X.; Huang, X. J. Org. Chem. 2015, 80, 11407.  doi: 10.1021/acs.joc.5b02057

    20. [20]

      Pawar, S. K.; Sahani, R. L.; Liu, R.-S. Chem. Eur. J. 2015, 21, 10843.  doi: 10.1002/chem.v21.30

    21. [21]

      Yu, Y.; Chen, G.; Zhu, L.; Liao, Y.; Wu, Y.; Huang, X. J. Org. Chem. 2016, 81, 8142.  doi: 10.1021/acs.joc.6b01948

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    3. [3]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    4. [4]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    7. [7]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    8. [8]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    9. [9]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    10. [10]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    11. [11]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    12. [12]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    13. [13]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    14. [14]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    15. [15]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    16. [16]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    19. [19]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    20. [20]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

Metrics
  • PDF Downloads(18)
  • Abstract views(5298)
  • HTML views(376)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return