Citation: Liao Yun, Zhu Lei, Yu Yinghua, Chen Gui, Huang Xueliang. N-Heterocycle Synthesis via Gold-Catalyzed Intermolecular Nitrene Transfer Reactions of Alkynes[J]. Chinese Journal of Organic Chemistry, ;2017, 37(11): 2785-2799. doi: 10.6023/cjoc201708021 shu

N-Heterocycle Synthesis via Gold-Catalyzed Intermolecular Nitrene Transfer Reactions of Alkynes

  • Corresponding author: Chen Gui, chengui@fjirsm.ac.cn Huang Xueliang, huangxl@fjirsm.ac.cn
  • Received Date: 11 August 2017
    Revised Date: 8 September 2017
    Available Online: 19 November 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21402197, 21502190), and the Natural Science Foundation of Fujian Province (No. 2017J01031)the National Natural Science Foundation of China 21402197the National Natural Science Foundation of China 21502190the Natural Science Foundation of Fujian Province 2017J01031

Figures(25)

  • N-Heterocyclic rings are versatile structural units that widely dispersed in a variety of natural products, biological active species, and photoelectric materials. They are also useful building blocks in synthetic community. This review mainly focused on recent progress on gold-catalyzed intermolecular nitrene transfer reactions with alkynes. This strategy complements the toolbox for the synthesis of multisubstituted N-heterocyclic compounds. Mechanistically, activated by a suitable gold catalyst, the specific alkyne could react with a nitrene precursor, providing the final N-heterocyclic compounds in highly efficient manner.
  • 加载中
    1. [1]

      (a) Pozharskii, A. F.; Soldatenkov, A. T.; Katritzky, A. R. Heterocycles in Life and Society, Wiley, New York, 1997.
      (b) Katritzky, A. R. Handbook of Heterocyclic Chemistry, Per-gamon Press, Oxford, 1985.
      (c) Balaban, A. T.; Oniciu, D. C.; Katritzky, A. R. Chem. Rev. 2004, 104, 2777.

    2. [2]

      Related reviews, see:(a) Fürstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410.
      (b) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180.
      (c) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351.
      (d) Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326.
      (e) Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208.
      (f) Hashmi, A. S. K. Angew. Chem., Int. Ed.2010, 49, 5232.
      (g) Xiao, J.; Li, X. Angew. Chem., Int. Ed. 2011, 50, 7226.
      (h) Friend, C. M.; Hashmi, A. S. K. Acc. Chem. Res. 2014, 47, 729.
      (i) Zhang, L. Acc. Chem. Res. 2014, 47, 877.
      (j) Yeom, H.-S.; Shin, S. Acc. Chem. Res. 2014, 47, 966.
      (k) Dorel, R.; Echavarren, A. M. Chem. Rev. 2015, 115, 9028.
      (l) Qian, D.; Zhang, J. Chem. Soc. Rev. 2015, 44, 677.
      (m) Davies, P. W.; Garzûn, M. Asian J. Org. Chem. 2015, 4, 694.
      (n) Huple, D. B.; Ghorpade, S.; Liu, R.-S. Adv. Synth. Catal. 2016, 358, 1348.
      (o) Pan, F.; Shu, C.; Ye, L.-W. Org. Biomol. Chem. 2016, 14, 9456.
      (p) Shu, C.; Li, L.; Tan, T.-D.; Yuan, D.-Q.; Ye, L.-W. Sci. Bull. 2017, 62, 352.

    3. [3]

      Recent related reviews, see:(a) Davies, P. W.; Garzûn, M. Asian J. Org. Chem. 2015, 4, 694.
      (b) Song, X.-R.; Qiu, Y.-F.; Liu, X.-Y.; Liang, Y.-M. Org. Bio-mol. Chem. 2016, 14, 11317.

    4. [4]

      (a) Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 11260.
      (b) Huo, Z.; Yamamoto, Y. Tetrahedron Lett. 2009, 50, 3651.
      (c) Wetzel, A.; Gagosz, F. Angew. Chem., Int. Ed. 2011, 50, 7354.
      (d) Lu, B.; Luo, Y.; Liu, L.; Ye, L.; Wang, Y.; Zhang, L. Angew. Chem., Int. Ed. 2011, 50, 8358.
      (e) Yan, Z.-Y.; Xiao, Y.; Zhang, L. Angew. Chem., Int. Ed. 2012, 51, 8624.
      (f) Xiao, Y.; Zhang, L. Org. Lett. 2012, 14, 4662.
      (g) Gronnier, C.; Boissonnat G.; Gagosz, F. Org. Lett. 2013, 15, 4234.
      (h) Prechter, A.; Henrion, G.; Bel, P. F.; Gagosz, F. Angew. Chem., Int. Ed. 2014, 53, 4959.
      (i) Shen, C.-H.; Pan, Y.; Yu, Y.-F.; Wang, Z.-S.; He, W.; Li, T.; Ye, L.-W. J. Organomet. Chem. 2015, 795, 63.
      (j) Li, N.; Wang, T. Y.; Gong, L. Z.; Zhang, L. Chem. Eur. J. 2015, 21, 3585.
      (k) Pan, Y.; Chen, G.-W.; Shen, C.-H.; He, W.; Ye, L.-W. Org. Chem. Front. 2016, 3, 491.
      (l) Li, N.; Lian, X. L.; Li, Y. H.; Wang, T. Y.; Han, Z. Y.; Zhang, L.; Gong, L. Z. Org. Lett. 2016, 18, 4178.
      (m) Lonca, G. H.; Tejo, C.; Chan, H. L.; Chiba, S.; Gagosz, F. Chem. Commun. 2017, 53, 736.
      (n) Zhang, X.-X.; Sun, X.-P.; Fan, H.; Li, P.; Lyu, C.; Rao, W.-D. Eur. J. Org. Chem. 2016, 25, 4265.
      (o) Zhang, X.-X.; Sun, X.-P.; Fan, H.; Lyu, C.; Li, P.; Zhang, H.-F.; Rao, W.-D. RSC Adv. 2016, 6, 56319.
      (p) Zhang, X.-X; Li, P.; Lyu, C.; Yong, W.-X.; Li, J.; Zhu, X.-B.; Rao, W.-D. Org. Biomol. Chem. 2017, 15, 6080.
      (q) González, J.; Santamaría, J.; Suárez-Sobrino, Á. L.; Ballesteros, A. Adv. Synth. Catal. 2016, 358, 1398.

    5. [5]

      Li, C.; Zhang, L. Org. Lett. 2011, 13, 1738.  doi: 10.1021/ol2002607

    6. [6]

      (a) Davies, P. W.; Cremonesi, A.; Dumitrescu, L. Angew. Chem., Int. Ed. 2011, 50, 8931.
      (b) Gillie, A. D.; Reddy, R. J.; Davies, P. W. Adv. Synth. Catal. 2016, 358, 226.

    7. [7]

      (a) Chatzopoulou, E.; Davies, P. W. Chem. Commun. 2013, 49, 8617.
      (b) Garzûn, M.; Davies, P. W. Org. Lett. 2014, 16, 4850.

    8. [8]

      Reddy, R. J.; Ball-Jones, M. P.; Davies, P. W. Angew. Chem., Int. Ed. 2017, 56, 13310..  doi: 10.1002/anie.201706850

    9. [9]

    10. [10]

      Sahani, R. L.; Liu, R.-S. Angew. Chem., Int. Ed. 2017, 56, 1026.  doi: 10.1002/anie.201610665

    11. [11]

      (a) Jin, H.; Huang, L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2016, 55, 794.
      (b) Jin, H.; Tian, B.; Song, X.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2016, 55, 12688.
      (c) Sahani, L.-R.; Liu, R.-S. Angew. Chem., Int. Ed. 2017, 56, 12736.

    12. [12]

      Chen, M.; Sun, N.; Chen, H.-Y.; Liu, Y.-H. Chem. Commun. 2016, 52, 6324.  doi: 10.1039/C6CC02776H

    13. [13]

      Zhao, Y.-Y.; Hu, Y.-C.; Wang, C.-X.; Li, X.-C.; Wan, B.-S. J. Org. Chem. 2017, 82, 3935.  doi: 10.1021/acs.joc.7b00076

    14. [14]

      Xu, W.; Wang, G.-N.; Sun, N.; Liu, Y.-H. Org. Lett. 2017, 19, 3307.  doi: 10.1021/acs.orglett.7b01469

    15. [15]

      Zeng, Z.-Y.; Jin, H.-M.; Xie, J.; Tian, B.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Org. Lett. 2017, 19, 1020.  doi: 10.1021/acs.orglett.7b00001

    16. [16]

      Zeng, Z.; Jin, H.; Song, X.; Wang, Q.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Chem. Commun. 2017, 53, 4304.  doi: 10.1039/C7CC00789B

    17. [17]

      Zhu, L.; Yu, Y.; Mao, Z.; Huang, X. Org. Lett. 2015, 17, 30.  doi: 10.1021/ol503172h

    18. [18]

      (a) Shu, C.; Wang, Y.-H.; Zhou, B.; Li, X.-L.; Ping, Y.-F.; Lu, X.; Ye, L.-W. J. Am. Chem. Soc. 2015, 137, 9567.
      (b) Shu, C.; Wang, Y.-H.; Shen, C.-H.; Ruan, P.-P.; Lu, X.; Ye, L.-W. Org. Lett. 2016, 18, 3254.
      (c) Shu, C.; Shen, C.-H.; Wang, Y.-H.; Li, L.; Li, T.; Lu, X.; Ye, L.-W. Org. Lett. 2016, 18, 4630.
      (d) Ruan, P.-P.; Li, H.-H.; Liu, X.; Zhang, T.; Zuo, S.-X.; Zhu, C.-Y.; Ye, L.-W. J. Org. Chem. 2017, 82, 9119.

    19. [19]

      Wu, Y.; Zhu, L.; Yu, Y.; Luo, X.; Huang, X. J. Org. Chem. 2015, 80, 11407.  doi: 10.1021/acs.joc.5b02057

    20. [20]

      Pawar, S. K.; Sahani, R. L.; Liu, R.-S. Chem. Eur. J. 2015, 21, 10843.  doi: 10.1002/chem.v21.30

    21. [21]

      Yu, Y.; Chen, G.; Zhu, L.; Liao, Y.; Wu, Y.; Huang, X. J. Org. Chem. 2016, 81, 8142.  doi: 10.1021/acs.joc.6b01948

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    3. [3]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    4. [4]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    5. [5]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    6. [6]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    7. [7]

      Minglei SunZhong-Yong Yuan . Valorization strategies for electrodegradation of nitrogenous wastes in sewage. Acta Physico-Chimica Sinica, 2025, 41(9): 100108-0. doi: 10.1016/j.actphy.2025.100108

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    10. [10]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    11. [11]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    12. [12]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    13. [13]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    14. [14]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    15. [15]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    16. [16]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    19. [19]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    20. [20]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

Metrics
  • PDF Downloads(19)
  • Abstract views(5514)
  • HTML views(396)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return