Citation: Luo Junfei, Xu Xing, Zheng Junliang. Advance in C-H Arylation of Indoles[J]. Chinese Journal of Organic Chemistry, ;2018, 38(2): 363-377. doi: 10.6023/cjoc201707031 shu

Advance in C-H Arylation of Indoles

  • Corresponding author: Luo Junfei, luojunfei@nbu.edu.cn
  • Received Date: 29 July 2017
    Revised Date: 11 September 2017
    Available Online: 26 February 2017

    Fund Project: Project supported by the Research Funds of Ningbo University (No. ZX2016000748) and the K. C. Wong Magna Fund in Ningbo Universitythe Research Funds of Ningbo University ZX2016000748

Figures(15)

  • The indoles motifs are widely found in the nature. One of the efficient strategy to access the indole derivatives is through the direct C-H functionalization of indole framework itself under transition-metal catalysis. Herein, the research advances on the transition-metal-catalyzed C-H arylation of indoles are reviewed.
  • 加载中
    1. [1]

    2. [2]

      Fischer, E.; Jourdan, F. Ber. Dtsch. Chem. Ges. 1883, 16, 2241.  doi: 10.1002/(ISSN)1099-0682

    3. [3]

      Street, L. J.; Baker, R.; Castro, J. L.; Chambers, M. S.; Guiblin, A. R.; Hobbs, S. C.; Matassa, U. G.; Reeve, A. J.; Beer, M. S.; Middlemiss, D. N.; Noble, A. J.; Stanton, J. A.; Scholey, K.; Hargreaves, R. J. J. Med. Chem. 1993, 36, 1529.  doi: 10.1021/jm00063a003

    4. [4]

      Reissert, A. Ber. Dtsch. Chem. Ges. 1897, 30, 1030.  doi: 10.1002/(ISSN)1099-0682

    5. [5]

      Batcho, A. D.; Leimgruber, W. Org. Synth. 1985, 63, 214.  doi: 10.15227/orgsyn.063.0214

    6. [6]

      Houlihan, W. J.; Parrino, V. A. Uike, Y. J. Org. Chem. 1981, 46, 4511.  doi: 10.1021/jo00335a038

    7. [7]

      Nordlander, J. E.; Catalane, D. B.; Kotian, K. D.; Stevens, R. M.; Haky, J. E. J. Org. Chem. 1981, 46, 778.  doi: 10.1021/jo00317a026

    8. [8]

      Bartoli, G.; Palmieri, G.; Bosco, M.; Dalpozzo, R. Tetrahedron Lett. 1989, 30, 2129.  doi: 10.1016/S0040-4039(01)93730-X

    9. [9]

      Patrick, J. B.; Saunders, E. K. Tetrahedron Lett. 1979, 4009.
       

    10. [10]

      Gassman, P. G.; Roos, J. J.; Lee, S. J. J. Org. Chem. 1984, 49, 717.  doi: 10.1021/jo00178a033

    11. [11]

      Furstner, A.; Ernst, A. Tetrahedron 1995, 51, 773.  doi: 10.1016/0040-4020(94)00987-6

    12. [12]

      Fukukyama, T.; Chen, X.; Peng, G. J. Am. Chem. Soc. 1994, 116, 3127.  doi: 10.1021/ja00086a054

    13. [13]

      Sugasawa, T.; Adachi, M.; Sasakura, K.; Kitagawa, A. J. Org. Chem. 1979, 44, 578.  doi: 10.1021/jo01318a021

    14. [14]

    15. [15]

      (a) Deng, H. ; Jung, J. -K. ; Liu, T. ; Kuntz, K. W. ; Snapper, M. L. ; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 9032.
      (b) Nicolaou, K. C. ; Rao, P. B. ; Hao, J. ; Reddy, M. V. ; Rassias, G. ; Huang, X. ; Chen, D. Y. -K. ; Snyder, S. A. Angew. Chem., Int. Ed. 2003, 42, 1753.
      (c) Nicolaou, K. C. ; Hao, J. ; Reddy, M. V. ; Rao, P. B. ; Rassias, G. ; Snyder, S. A. ; Huang, X. ; Chen, D. Y. -K. ; Brenzovich, W. E. ; Giuseppone, N. ; Giannakakou, P. ; O'Brate, A. J. Am. Chem. Soc. 2004, 126, 12897.

    16. [16]

      See the most recent examples: (a) Petrini, M. Chem. Eur. J. 2017, 23, 16115.
      (b) Tayu, M. ; Nomura, K. ; Kawachi, K. ; Higuchi, K. ; Saito, N. ; Kawasaki, T. Chem. -Eur. J. 2017, 23, 10925.
      (c) Ni, J. -B. ; Zhao, H. -C. ; Zhang, A. Org. Lett. 2017, 19, 3159.
      (d) Erdenebileg, U. ; Demissie, E. B. ; Hansen, J. H. Synlett 2017, 907.
      (e) Borah, A. J. ; Shi, Z. -Z. Chem. Commun. 2017, 53, 3945.
      (f) Leitch, J. A. ; McMullin, C. L. ; Mahon, M. F. ; Bhonoah, Y. ; Frost., C. G. ACS Catal. 2017, 7, 2616.
      (g) Iagafarova, I. E. ; Vorobyeva, D. V. ; Loginov, D. A. ; Peregudov, A. S. ; Osipov, S. N. Eur. J. Org. Chem. 2017, 840.
      (h) Zhao, Y. P. ; Sharma, U. K. ; Schroder, F. ; Sharma, N. ; Song, G. ; Van der Eycken, E. V. RSC Adv. 2017, 7, 32559.

    17. [17]

      (a) Bandini, M. ; Melloni, A. ; Tommasi, S. ; Umani-Ronchi, A. Synlett 2005, 1199.
      (b) Bandini, M. ; Eichholzer, A. Angew. Chem., Int. Ed. 2009, 48, 9608.
      (c) Beck, E. M. ; Gaunt, M. J. Top. Curr. Chem. 2010, 292, 85.
      (d) Cacchi, S. ; Fabrizi, G. Chem. Rev. 2011, 111, 215.
      (e) Sandtorv, A. H. Adv. Synth. Catal. 2015, 357, 2403.
      (f) Chen, J. -B. ; Jia, Y. -X. Org. Biomol. Chem. 2017. 15. 3550.
      (g) Szatmari, I. ; Sas, J. ; Fulop, F. Curr. Org. Chem. 2017. 20. 2038.

    18. [18]

      Robbins, D. W.; Boebel, T. A.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 4068;  doi: 10.1021/ja1006405

    19. [19]

      Yang, Y. -Q.; Qiu, X. -D.; Zhao, Y.; Mu, Y. -C.; Shi, Z. -Z. J. Am. Chem. Soc. 2016, 138, 495.  doi: 10.1021/jacs.5b11569

    20. [20]

    21. [21]

      Feng, Y.; Holte, D.; Zoller, J.; Umemiya, S.; Simke, l. R.; Baran, P. S. J. Am. Chem. Soc. 2015, 137, 10160.  doi: 10.1021/jacs.5b07154

    22. [22]

      Yang, Y. -Q.; Li, R. -R.; Zhao, Y.; Zhao, D. -B.; Shi, Z. -Z. J. Am. Chem. Soc. 2016, 138, 8734.  doi: 10.1021/jacs.6b05777

    23. [23]

      (a) Phipps, R. J. ; Gaunt, M. J. Science 2009, 323, 1593.
      (b) Chen, B. ; Hou, X. -L. ; Li, Y. -X. ; Wu, Y. -D. J. Am. Chem. Soc. 2011, 133, 7668.

    24. [24]

      Yang, Y. -Q; Gao, P.; Zhao, Y.; Shi, Z. -Z. Angew. Chem., Int. Ed. 2017, 56, 3966.  doi: 10.1002/anie.201612599

    25. [25]

      Xu, L. -T.; Zhang, C.; He, Y. -P.; Tan, L. -S.; Ma, D. -W. Angew. Chem., Int. Ed. 2016, 55, 321.  doi: 10.1002/anie.201508117

    26. [26]

      Kim, Y.; Park, J.; Chang, S. Org. Lett. 2016, 18, 1892.  doi: 10.1021/acs.orglett.6b00662

    27. [27]

      Xu, L. -T.; Tan, L. -S; Ma, D. -W. J. Org. Chem. 2016, 81, 10476.  doi: 10.1021/acs.joc.6b01856

    28. [28]

      Song, Z.; Antonchick, A. P. Org. Biomol. Chem. 2016, 14, 4804.  doi: 10.1039/C6OB00926C

    29. [29]

      Wang, L.; Li, Z.; Qu, X.; Peng, W. -M.; Hu, S. -Q, Wang, H. -B. Tetrahedron Lett. 2015, 56, 6214.  doi: 10.1016/j.tetlet.2015.09.091

    30. [30]

      Liu, Q.; Li, Q.; Ma, Y.; Jia, Y. -X. Org. Lett. 2013, 15, 4528.  doi: 10.1021/ol4020877

    31. [31]

    32. [32]

      Lanke, V.; Prabhu, K. R. Org. Lett. 2013, 15, 6262.  doi: 10.1021/ol4031149

    33. [33]

      Lv, J. -B; Wang, B; Yuan, K; Wang, Y; Jia, Y. -X. Org. Lett. 2017, 19, 3664.  doi: 10.1021/acs.orglett.7b01681

    34. [34]

      Feng, Y.; Holte, D.; Zoller, J.; Umemiya, S.; Simke, L. R.; Baran, P. S. J. Am. Chem. Soc. 2015, 137, 10160.  doi: 10.1021/jacs.5b07154

    35. [35]

      Leitch, J. A.; McMullin, C. L.; Mahon, M. F.; Bhonoah, Y.; Frost, C. G. ACS Catal. 2017, 7, 2616.  doi: 10.1021/acscatal.7b00038

    36. [36]

      Zhang, Z. -Q.; Hu, Z. -Z.; Yu, Z. -X.; Lei, P.; Chi, H. -J; Wang, Y.; He, R. Tetrahedron Lett. 2007, 48, 2415.  doi: 10.1016/j.tetlet.2007.01.173

    37. [37]

      Bellina, F.; Benelli, F.; Rossi, R. J. Org. Chem. 2008, 73, 5529.  doi: 10.1021/jo8007572

    38. [38]

      Ackermann, L.; Barfeusser, S. Synlett 2009, 808.

    39. [39]

      Perato, S.; Large, B.; Lu, Q.; Gaucher, A.; Prim, D. ChemCatChem 2017, 9, 389.  doi: 10.1002/cctc.v9.3

    40. [40]

      Cusati, G.; Djakovitch, L. Tetrahedron Lett. 2008, 49, 2499.  doi: 10.1016/j.tetlet.2008.02.130

    41. [41]

      Cornella, J.; Lu, P.; Larrosa, I. Org. Lett. 2009, 11, 5506.  doi: 10.1021/ol902304n

    42. [42]

      Chen, Y. -X.; Guo, S. -B.; Li, K. -L.; Qu, J. -P.; Yuan, H.; Hua, Q. -R.; Chen, B. -H. Adv. Synth. Catal. 2013, 355, 711.  doi: 10.1002/adsc.201200997

    43. [43]

      Chen, S. -P.; Liao, Y. -F.; Zhao, F.; Qi, H. -R.; Liu, S. -W.; Deng, G. -J. Org. Lett. 2014, 16, 1618.  doi: 10.1021/ol500231c

    44. [44]

      (a) Stuart, D. R. ; Villemure, E. ; Fagnou, K. J. Am. Chem. Soc. 2007, 129, 12072.
      (b) Stuart, D. R. ; Fagnou, K. Science 2007, 316, 1172.

    45. [45]

      Li, Y.; Wang, W. -H.; Yang, S. -D.; Li, B. -J.; Feng, C.; Shi, Z. -J. Chem. Commun. 2010, 46, 4553.  doi: 10.1039/c0cc00486c

    46. [46]

      Gong, X.; Song, G. -Y.; Zhang, H.; Ling, X. -W. Org. Lett. 2011, 13, 1766.  doi: 10.1021/ol200306y

    47. [47]

      Yamaguchi, A. D.; Mandal, D.; Yamaguchi, J.; Itami, K. Chem. Lett. 2011, 40, 555.  doi: 10.1246/cl.2011.555

    48. [48]

      Wang, Z.; Li, K. -Z.; Zhao, D. -B.; Lan, J. -B.; You, J. -S.; Angew. Chem., Int. Ed. 2011, 50, 5365.  doi: 10.1002/anie.201101416

    49. [49]

      Varaksin, M. V.; Utepova, I. A.; Chupakhin, O. N.; Charushin, V. N. J. Org. Chem. 2012, 77, 9087.  doi: 10.1021/jo301618b

    50. [50]

      Sitnikov, N. S.; Kokisheva, A. S.; Fukin, G. K.; Neudcrfl, J. M.; Sutorius, H.; Prokop, A.; Fokin, V. V.; Schmalz, H. G.; Fedorov, A. Y. Eur. J. Org. Chem. 2014, 6481.

    51. [51]

      Baral, E. R.; Lee, Y. R.; Kim, S. H. Adv. Synth. Catal. 2015, 357, 2883.  doi: 10.1002/adsc.v357.13

    52. [52]

      Cresswell, A. J.; Lloyd-Jones, G. C. Chem. -Eur. J. 2016, 22, 12641.  doi: 10.1002/chem.v22.36

    53. [53]

      Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 8172.  doi: 10.1021/ja801767s

    54. [54]

      Modha, S. G.; Greaney, M. F. J. Am. Chem. Soc. 2015, 137, 1416.  doi: 10.1021/ja5124754

    55. [55]

      Pitts, A. K.; O'Hara, F.; Snell, R. H.; Gaunt, M. J. Angew. Chem., Int. Ed. 2015, 54, 5451.  doi: 10.1002/anie.201500067

    56. [56]

      Zhang, Y. -P.; Feng, X. -L.; Yang, Y. -S.; Cao, B. -X. Tetrahedron Lett. 2016, 57, 2298.  doi: 10.1016/j.tetlet.2016.04.051

    57. [57]

      Chen, J.; Wu, J. Angew. Chem., Int. Ed. 2017, 56, 3951.  doi: 10.1002/anie.201612311

    58. [58]

      Toure, B. B.; Lane, B. S.; Sames, D. Org. Lett. 2006, 8, 1979.  doi: 10.1021/ol053021c

    59. [59]

      Bellina, F.; Calandri, C.; Cauteruccio, S.; Rossi, R. Tetrahedron 2007, 63, 1970.  doi: 10.1016/j.tet.2006.12.068

    60. [60]

      Lebrasseur, N.; Larrosa, I. J. Am. Chem. Soc. 2008, 130, 2926.  doi: 10.1021/ja710731a

    61. [61]

      Xu, Z. -M.; Xu, Y. -L.; Lu, H. -F.; Yang, T.; Lin, X. -C.; Shao, L. -M.; Ren, F. Tetrahedron 2015, 71, 2616.  doi: 10.1016/j.tet.2015.03.051

    62. [62]

      Gao, Y. -D.; Zhu, W. -Y.; Yin, L.; Dong, B.; Fu, J. -J.; Ye, Z. -W.; Xue, F. -T.; Jiang, C. Tetrahedron 2017, 58, 2213.  doi: 10.1016/j.tetlet.2017.04.066

    63. [63]

      Preciado, S.; Mendive-Tapia, L.; Albericio, F.; Lavilla, R. J. Org. Chem. 2013, 78, 8129.  doi: 10.1021/jo400961x

    64. [64]

      Paquet, J. -L.; Barth, M.; Pruneau, D.; Dodey, P. WO 2001038305, 2001.

    65. [65]

      Deprez, N. R.; Kalyani, D.; Krause, A.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 4972.  doi: 10.1021/ja060809x

    66. [66]

      Malmgren, J.; Nagendiran, A.; Tai, C. -W.; Backvall, J. E.; Olofsson, B. Chem. Eur. J. 2014, 20, 13531.  doi: 10.1002/chem.v20.42

    67. [67]

      Duan, L. -L.; Fu, R.; Zhang, B. -S.; Shi, W.; Chen, S. -J.; Wan, Y. ACS Catal. 2016, 6, 1062.  doi: 10.1021/acscatal.5b02147

    68. [68]

      Yang, S. -D.; Sun, C. -L.; Fang, Z.; Li, B. -J.; Li, Y. -Z.; Shi, Z. -J. Angew. Chem. 2008, 120, 1495.  doi: 10.1002/(ISSN)1521-3757

    69. [69]

      Huang, Y. -B.; Ma, T.; Huang, P.; Wu, D. -S.; Lin, Z. -J.; Cao, R. ChemCatChem 2013, 5, 1877.  doi: 10.1002/cctc.v5.7

    70. [70]

      Zhao, J. -L.; Zhang, Y. -H.; Cheng, K. J. Org. Chem. 2008, 73, 7428.  doi: 10.1021/jo801371w

    71. [71]

      Liang, Z. -J.; Yao, B. -B.; Zhang, Y. -H. Org. Lett. 2010, 12, 3186.

    72. [72]

      Hfaiedh, A.; Yuan, K.; Ammar, H. B.; Hassine, B. B.; Soule, J. F.; Doucet, H. ChemSusChem 2015, 8, 1794.  doi: 10.1002/cssc.201403429

    73. [73]

      Liu, C. -R.; Ding, L. -H.; Guo, G.; Liu, W. -W.; Yang, F. -L. Org. Biomol. Chem. 2016, 14, 2824.  doi: 10.1039/C5OB02569A

    74. [74]

      Laha, J. K.; Bhimpuria, R. A.; Prajapati, D. V.; Dayal, N.; Sharma, S. Chem. Commun. 2016, 52, 4329.  doi: 10.1039/C6CC00133E

    75. [75]

      Wang, X.; Lane, B. S.; Sames, D. J. Am. Chem. Soc. 2005, 127, 4996.  doi: 10.1021/ja050279p

    76. [76]

      Zhang, L. -J.; Xue, X.; Xu, C. -H.; Pan, Y. -X.; Zhang, G.; Xu, L. -J.; Li, H. -R.; Shi, Z. -J. ChemCatChem 2014, 6, 3069.  doi: 10.1002/cctc.201402534

    77. [77]

      (a) Lu, M. -Z. ; Lu, P. ; Xu, Y. -H. ; Loh, T. -P. Org. Lett. 2014, 16, 2614.
      (b) Wang, L. ; Qu, X. ; Li, Z. ; Peng, W. -M. Tetrahedron Lett. 2015, 56, 3754.

    78. [78]

      Zheng, J.; Zhang, Y.; Cui, S. -L. Org. Lett. 2014, 16, 3560.  doi: 10.1021/ol5014312

    79. [79]

      Nishino, M.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2012, 51, 6993.  doi: 10.1002/anie.201201491

    80. [80]

      Sollert, C.; Devaraj, K.; Orthaber, A.; Gates, P. J.; Pilarski, L. T. Chem. Eur. J. 2015, 21, 5258.  doi: 10.1002/chem.201590053

    81. [81]

      Tiwari, V. K.; Kamal, N.; Kapur, M. Org. Lett. 2015, 17, 1766.  doi: 10.1021/acs.orglett.5b00535

    82. [82]

      Jagtap, R. A.; Soni, V.; Punji, B. ChemSusChem 2017, 10, 2242.  doi: 10.1002/cssc.201700321

    83. [83]

      Zhu, X.; Su, J. -H.; Du, C.; Wang, Z. -L.; Ren, C. -J.; Niu, J. -L.; Song, M. -P. Org. Lett. 2017, 19, 596.  doi: 10.1021/acs.orglett.6b03746

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    4. [4]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    5. [5]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    6. [6]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    7. [7]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    8. [8]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    9. [9]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    10. [10]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    11. [11]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    12. [12]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    13. [13]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    14. [14]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    15. [15]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    16. [16]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    19. [19]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    20. [20]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

Metrics
  • PDF Downloads(179)
  • Abstract views(6019)
  • HTML views(2112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return