Citation: Li Shanshan, Hong Hailong, Han Limin, Zhang Tianmiao, Wang Yunlong, Zhu Ning. Research Progress for the Thiolysis Reaction of Halobenzonitrile[J]. Chinese Journal of Organic Chemistry, ;2018, 38(2): 304-315. doi: 10.6023/cjoc201707002 shu

Research Progress for the Thiolysis Reaction of Halobenzonitrile

  • Corresponding author: Hong Hailong, honghailong_1979@163.com Zhu Ning, zhuning2622@yahoo.com
  • Received Date: 3 July 2017
    Revised Date: 23 September 2017
    Available Online: 20 February 2017

    Fund Project: the Natural Science Foundation of Inner Mongolia 2016MS0207the National Natural Science Foundation of China 21362019Project supported by the National Natural Science Foundation of China (No. 21362019), the Natural Science Foundation of Inner Mongolia (No. 2016MS0207) and the "Light of West China" Program of Chinese Academy of Sciences

Figures(24)

  • Halobenzonitrile is an important raw material in the fields of medicine, pesticide and materials. Halobenzonitrile has a nitrile group and a halo group which all could react with nucleophile reagents. The law for the selective synthesis of halothiobenzamide or mercaptobenzonitrile from the reaction of halobenzonitrile and different sulfur source is summarized. It is found that the halothiobenzamide product could be synthesized under protonic acid condition from halobenzonitrile, while the mercaptobenzonitrile product would be formed under the alkaline conditions.
  • 加载中
    1. [1]

      (a) Garcia Alejandre, J. J. ; Arevalo Salas, A. R. ; Reyes Rios, G. ; Crestani Gutierrez, M. G. ; Barrios Francisco, R. Chem. Commun. 2011, 47, 10121.
      (b) Feng, W. ; Dong, H. ; Niu, L. ; En, X. ; Huo, L. ; Bai, G. J. Mater. Chem. A 2015, 3, 19807.
      (c) Adam, R. ; Alberico, E. ; Baumann, W. ; Drexler, H. -J. ; Jackstell, R. ; Junge, H. ; Beller, M. Chem. -Eur. J. 2016, 22, 4991.

    2. [2]

      (a) Theodorou, V. ; Paraskevopoulos, G. ; Skobridis, K. ARKIVOC 2015, 101.
      (b) Marce, P. ; Lynch, J. ; Blacker, A. J. ; Williams, J. M. J. Chem. Commun. 2016, 52, 1436.

    3. [3]

      Louvel, J.; Guo, D.; Agliardi, M.; Mocking, T. A. M.; Kars, R.; Pham, T. P.; Xia, L.; de Vries, H.; Brussee, J.; Heitman, L. H.; Ijzerman, A. P. J. Med. Chem. 2014, 57, 3213.  doi: 10.1021/jm401643m

    4. [4]

      Hua, G.; Du, J.; Slawin, A. M. Z.; Woollins, J. D. Synlett 2014, 25, 2189.  doi: 10.1055/s-00000083

    5. [5]

      (a) Ichinokawa, N. ; Onozaki, Y. WO 2016143655, 2016 [Chem. Abstr. 2016, 165, 365462].
      (b) Flesch, D. ; Gabler, M. ; Lill, A. ; Gomez, R. C. ; Steri, R. ; Schneider, G. ; Stark, H. ; Schubert-Zsilavecz, M. ; Merk, D. Bioorg. Med. Chem. Lett. 2015, 23, 3490.

    6. [6]

      (a) Ghodsinia, S. S. E. ; Akhlaghinia, B. RSC Adv. 2015, 5, 49849.
      (b) Esmaeilpour, M. ; Javidi, J. ; Zahmatkesh, S. Appl. Organomet. Chem. 2016, 30, 897.

    7. [7]

      Garcia, J. J.; Zerecero-Silva, P.; Reyes-Rios, G.; Crestani, M. G.; Arevalo, A.; Barrios-Francisco, R. Chem. Commun. 2011, 47, 10121.  doi: 10.1039/c1cc13497c

    8. [8]

      Tanaka, H.; Shizu, K.; Nakanotani, H.; Adachi, C. J. Phys. Chem. C 2014, 118, 15985.  doi: 10.1021/jp501017f

    9. [9]

      Ding, G.; Han, H.; Jiang, T.; Wu, T.; Han, B. Chem. Commun. 2014, 50, 9072.  doi: 10.1039/C4CC02267J

    10. [10]

      Nikoorazm, M.; Ghorbani-Choghamarani, A.; Noori, N.; Tahmasbi, B. Appl. Organomet. Chem. 2016, 30, 843.  doi: 10.1002/aoc.v30.10

    11. [11]

      Paik, S.; Jung, M. G. Bull. Korean Chem. Soc. 2012, 33, 689.  doi: 10.5012/bkcs.2012.33.2.689

    12. [12]

      Rostami, A.; Rostami, A.; Iranpoor, N.; Zolfigol, M. A. Tetrahedron Lett. 2016, 57, 192.  doi: 10.1016/j.tetlet.2015.11.093

    13. [13]

      Kassaee, M. Z.; Motamedi, E.; Movassagh, B.; Poursadeghi, S. Synthesis 2013, 45, 2337.  doi: 10.1055/s-00000084

    14. [14]

      Zhang, S.; Karra, K.; Koe, A.; Jin, J. Tetrahedron Lett. 2013, 54, 2452.  doi: 10.1016/j.tetlet.2013.02.084

    15. [15]

      Karimi, B.; Vafaeezadeh, M.; Akhavan, P. F. ChemCatChem 2015, 7, 2248.  doi: 10.1002/cctc.201500383

    16. [16]

      (a) Vo, N. H. ; Chen, S. ; Che, Q. ; Xie, Y. WO 2007087427, 2007 [Chem. Abstr. 2007, 147, 235154].
      (b) Crane, L. J. ; Anastassiadou, M. ; Stigliani, J. -L. ; Baziard-Mouysset, G. ; Payard, M. Tetrahedron 2004, 60, 5325.
      (c) Zhang, J. CN 102491955, 2012 [Chem. Abstr. 2012, 157, 45166].
      (d) Taldone, T. ; Patel, P. D. ; Patel, H. J. ; Chiosis, G. Tetrahedron Lett. 2012, 53, 2548.

    17. [17]

      Shen, G. L.; Xu, T. J. J. Liaoyang Petrochem. College 1998, 14, 1. (in Chinese).
       

    18. [18]

      Chen, J. -L. WO 2005086904, 2005[Chem. Abstr. 2005, 143, 326092. ]

    19. [19]

      (a) Liu, H. ; Jiang, X. Chem. -Asian J. 2013, 8, 2546.
      (b) Wei, J. ; Li, Y. ; Jiang, X. Org. Lett. 2016, 18, 340.
      (c) Tan, W. ; Wei, J. ; Jiang, X. Org. Lett. 2017, 19, 2166.
      (d) Nguyen, T. B. Adv. Synth. Catal. 2017, 10, 1066.

    20. [20]

      Fairfull, A. E. S.; Lowe, J. L.; Peak, D. A. J. Chem. Soc. 1952, 742.

    21. [21]

      Bjorklund, M. D. C.; Michael D. J. Heterocycl. Chem. 1980, 17, 819.  doi: 10.1002/jhet.v17:4

    22. [22]

      Hull, J. W.; Romer, D. R.; Adaway, T. J.; Podhorez, D. E. Org. Process Res. Dev. 2009, 13, 1125.  doi: 10.1021/op9001577

    23. [23]

      Cummings, C. G.; Hamilton, A. D. Tetrahedron 2013, 69, 1663.  doi: 10.1016/j.tet.2012.11.070

    24. [24]

      Bagley, M.; Chapaneri, K.; Glover, C.; Merritt, E. Synlett 2004, 36, 2615.
       

    25. [25]

      Khosropour, A. R.; Noei, J.; Mirjafari, A. J. Iran. Chem. Soc. 2010, 7, 752.  doi: 10.1007/BF03246065

    26. [26]

      Manaka, A.; Sato, M. Synth. Commun. 2005, 35, 761.  doi: 10.1081/SCC-200050393

    27. [27]

      Tisdell, F. E. ; Johnson, P. L. ; Pechacek, J. T. ; Suhr, R. G. ; Devries, D. H. ; Denny, C. P. ; Ash, M. L. WO 2000024739, 2000[Chem. Abstr. 2000, 132, 308343].

    28. [28]

      Nitlikar, L. H.; Sangshetti, J. N.; Shinde, D. B. Anti-Inflammatory Anti-Allergy Agents Med. Chem. 2014, 13, 128.

    29. [29]

      Chao, E. Y. -H. ; Haffner, C. D. ; Lambert, M. H. ; Maloney, P. R. ; Sierra, M. L. ; Sternbach, D. D. ; Sznaidman, M. L. ; Willson, T. M. ; Xu, H. E. ; Gellibert, F. J. WO 2001000603, 2001[Chem. Abstr. 2001, 134, 86235].

    30. [30]

      Brown, A. D.; Davis, R. D.; Fitzgerald, R. N.; Glover, B. N.; Harvey, K. A.; Jones, L. A.; Liu, B.; Patterson, D. E.; Sharp, M. J. Org. Process Res. Dev. 2009, 13, 297.  doi: 10.1021/op8002294

    31. [31]

      Tisdell, F. E. ; Johnson, P. L. ; Pechacek, J. T. ; Suhr, R. G. ; Devries, D. H. ; Denny, C. P. ; Ash, M. L. WO 2000024739, 2000[Chem. Abstr. 2000, 132, 308343].

    32. [32]

      Luqman, A.; Blair, V. L.; Brammananth, R.; Crellin, P. K.; Coppel, R. L.; Andrews P. C. Eur. J. Inorg. Chem. 2015, 4935.

    33. [33]

      Oschatz, S.; Brunzel, T.; Wu, X. F.; Langer, P. Org. Biomol. Chem. 2015, 13, 1150.  doi: 10.1039/C4OB02207F

    34. [34]

      Mahammed, K. A.; Jayashankara, V. P.; Rai, N. P.; Raju K. M.; Arunachalam, P. N. Synlett 2009, 2338.
       

    35. [35]

      Darabi, H. R.; Roozkhosh, A.; Aghapoor, K. Aust. J. Chem. 2016, 69, 198.  doi: 10.1071/CH15286

    36. [36]

      Gauthier, J. Y.; Lebel, H. Phosphorus, Sulfur Silicon Relat. Elem. 1994, 95, 325.  doi: 10.1080/10426509408034221

    37. [37]

      Lowe, A. ; Whittaker, M. ; Dieterich, P. ; Polywka, M. E. C. WO 2005095425, 2005[Chem. Abstr. 2005, 143, 378578].

    38. [38]

      Zhou, Z.; Li, Z.; Wang, Q.; Liu, B.; Li, K.; Zhao, G.; Zhou, Q.; Tang, C. J. Organomet. Chem. 2006, 691, 5790.  doi: 10.1016/j.jorganchem.2006.09.049

    39. [39]

      Van Zyl, W. E.; Fackler, J. P. Phosphorus, Sulfur Silicon Relat. Elem. 2000, 167, 117.  doi: 10.1080/10426500008082393

    40. [40]

      Kaboudin, B.; Elhamifar, D. Synthesis 2006, 224.
       

    41. [41]

      Kaboudin, B.; Elhamifar, D.; Farjadian, F. Org. Prep. Proced. Int. 2006, 38, 412.  doi: 10.1080/00304940609356003

    42. [42]

      Kaboudin, B.; Norouzi, H. Synthesis 2004, 2035.
       

    43. [43]

      Martelli, A.; Testai, L.; Citi, V.; Marino, A.; Pugliesi, I.; Barresi, E.; Nesi, G.; Rapposelli, S.; Taliani, S.; Da Settimo, F.; Breschi, M. C.; Calderone, V. ACS Med. Chem. Lett. 2013, 4, 904.  doi: 10.1021/ml400239a

    44. [44]

      Shabana, R.; Meyer, H. J.; Lawesson, S. O. Phosphorus, Sulfur Silicon Relat. Elem. 1985, 25, 297.  doi: 10.1080/03086648508072745

    45. [45]

      Pudovik, A. N.; Cherkasov, R. A.; Zimin, M. G.; Zabirov, N. G. Russ. Chem. Bull. 1979, 28, 805.  doi: 10.1007/BF00923586

    46. [46]

      Soh, C. H.; Chui, W. K.; Lam, Y. J. Comb. Chem. 2006, 8, 464.  doi: 10.1021/cc060030j

    47. [47]

      Benner, S. A. Tetrahedron Lett. 1981, 22, 1851.  doi: 10.1016/S0040-4039(01)90459-9

    48. [48]

      Cherkasov, R. A.; Kutyrev, G. A.; Pudovik, A. N. Tetrahedron 1985, 41, 2567.  doi: 10.1016/S0040-4020(01)96363-X

    49. [49]

      Nagl, M.; Panuschka, C.; Barta, A.; Schmid, W. Synthesis 2008, 4012.

    50. [50]

      Dixon, D. D. ; Grina, J. ; Josey, J. A. ; Rizzi, J. P. ; Schlachter, S. T. ; Wallace, E. M. ; Wang, B. ; Wehn, P. ; Xu, R. ; Yang, H. WO 2015035223, 2015[Chem. Abstr. 2015, 162, 413231].

    51. [51]

      Cerdeira, A. C.; Simão, D.; Santos, I. C.; Machado, A.; Pereira, L. C. J.; Waerenborgh, J. C.; Henriques, R. T.; Almeida, M. Inorg. Chim. Acta 2008, 361, 3836.  doi: 10.1016/j.ica.2008.02.068

    52. [52]

      Evans, T. L.; Kinnard, R. D. J. Org. Chem. 1983, 48, 2496.  doi: 10.1021/jo00163a013

    53. [53]

      Nie, W. M. S. Thesis, Dalian University of Technology, Dalian, 2011(in Chinese).

    54. [54]

      Zhang, S. M. WO 2013017026, 2013[Chem. Abstr. 2013, 158, 331037].

    55. [55]

      Crich, D.; Sharma, I. Angew. Chem., Int. Ed. 2009, 48, 7591.  doi: 10.1002/anie.v48:41

    56. [56]

      Kalugin, V. E.; Shestopalov, A. M. Russ. Chem. Bull. 2014, 63,

    57. [57]

      Qiao, S.; Xie, K.; Qi, J. Chin. J. Chem. 2010, 28, 1441.  doi: 10.1002/cjoc.v28:8

    58. [58]

      Tickner, A. M.; Huang, G. K.; Gombatz, K.; Mills, R. J.; Novack, V.; Webb, K. S. Synth. Commun. 1995, 25, 2497.  doi: 10.1080/00397919508015455

    59. [59]

      Dai, M. CN 103130738, 2013[Chem. Abstr. 2013, 159, 91976].

    60. [60]

      Korn, T. J.; Knochel, P. Synlett 2005, 1185.

    61. [61]

      Liu, Y.; Kim, J.; Seo, H.; Park, S.; Chae, J. Adv. Synth. Catal. 2015, 357, 2205.  doi: 10.1002/adsc.v357.10

    62. [62]

      Takikawa, Y.; Takizawa, S. Nippon Kagaku Kaishi 1972, 766.

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    3. [3]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    4. [4]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    5. [5]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    6. [6]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    7. [7]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    8. [8]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    9. [9]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    10. [10]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    11. [11]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    12. [12]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    13. [13]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    14. [14]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    15. [15]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    16. [16]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    17. [17]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    18. [18]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    19. [19]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(27)
  • Abstract views(5445)
  • HTML views(1423)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return