Citation: Hua Yuanzhao, Han Xingwang, Huang Lihua, Wang Mincan. Asymmetric Friedel-Crafts Alkylation of Pyrrole with Chalcones Catalyzed by a Dinuclear Zinc Catalyst[J]. Chinese Journal of Organic Chemistry, ;2018, 38(1): 237-245. doi: 10.6023/cjoc201706027 shu

Asymmetric Friedel-Crafts Alkylation of Pyrrole with Chalcones Catalyzed by a Dinuclear Zinc Catalyst

  • Corresponding author: Huang Lihua, huanglh2207@163.com Wang Mincan, wangmincan@zzu.edu.cn
  • Received Date: 19 June 2017
    Revised Date: 15 July 2017
    Available Online: 9 January 2017

    Fund Project: the Education Department of Henan Province 18B150028the Education Department of Henan Province 17B150014Project supported by the National Natural Science Foundation of China (No. 21272216) and the Education Department of Henan Province (Nos. 17B150014, 18B150028)the National Natural Science Foundation of China 21272216

  • An intramolecular dinuclear zinc complex was used in asymmetric Friedel-Crafts alkylation of pyrrole with a wide range of chalcone derivatives. This dinuclear zinc complex was prepared in situ by reacting the chiral ligand (S, S)-1 with 2 equiv. of ZnEt2. A series of β-pyrrole-substituted dihydrochalcones were formed mostly in excellent yields (up to 99%) and excellent enantioselectivities (up to >99% ee) by using 15 mol% catalyst loading under mild conditions. A possible mechanism was proposed to explain the origin of the asymmetric induction.
  • 加载中
    1. [1]

      (a) Matsunaga, S. ; Ohshima, T. ; Shibasaki, M. Adv. Synth. Catal. 2002, 344, 3.
      (b) Ma, J. A. ; Cahard, D. Angew. Chem. , Int. Ed. 2004, 43, 4566.
      (c) Shibasaki, M. ; Kanai, M. ; Matsunaga, S. ; Kumagai, N. Acc. Chem. Res. 2009, 42, 1117.
      (d) Trost, B. M. ; Bartlett, M. J. Acc. Chem. Res. 2015, 48, 688.

    2. [2]

      (a) Trost, B. M. ; Ito, H. J. Am. Chem. Soc. 2000, 122, 12003.
      (b) Trost, B. M. ; Fettes, A. J. Am. Chem. Soc. 2004, 126, 2660.
      (c) Trost, B. M. ; Shin, S. J. Am. Chem. Soc. 2005, 127, 8602.

    3. [3]

      (a) Trost, B. M. ; Yeh, V. S. C. Angew. Chem. , Int. Ed. 2002, 41, 861.
      (b) Trost, B. M. ; Lupton, D. W. Org. Lett. 2007, 9, 2023.

    4. [4]

      (a) Trost, B. M. ; Terrell, L. R. J. Am. Chem. Soc. 2003, 125, 338.
      (b) Zhao, D. ; Wang, L. ; Yang, D. ; Zhang, Y. ; Wang, R. Angew. Chem. , Int. Ed. 2012, 51, 7523.
      (c) Trost, B. M. ; Hung, C. -I. J. Am. Chem. Soc. 2015, 137, 15940.
      (d) Wang, X. -W. ; Hua, Y. -Z. ; Wang, M. -C. J. Org. Chem. 2016, 81, 9227.

    5. [5]

      (a) Trost, B. M. ; Mino, T. J. Am. Chem. Soc. 2003, 125, 2410.
      (b) Trost, B. M. ; Malhotra, S. ; Mino, T. ; Rajapaksa, N. S. Chem. Eur. J. 2008, 14, 7648.

    6. [6]

      (a) Trost, B. M. ; Hisaindee, S. Org. Lett. 2006, 8, 6003.
      (b) Trost, B. M. ; Hitce, J. J. Am. Chem. Soc. 2009, 131, 4572
      (c) Trost, B. M. ; Hirano, K. Angew. Chem. , Int. Ed. 2012, 51, 6480.
      (d) Song, X. ; Liu, J. ; Liu, M. -M. ; Wang, X. ; Zhang, Z. -F. ; Wang, M. -C. ; Chang, J. Tetrahedron 2014, 70, 5468.

    7. [7]

      (a) Trost, B. M. ; Weiss, A. H. ; Wangelin, A. J. J. Am. Chem. Soc. 2006, 128, 8.
      (b) Trost, B. M. ; Quintard, A. Angew. Chem. , Int. Ed. 2012, 51, 6704.

    8. [8]

      (a) Xiao, Y. ; Wang, Z. ; Ding, K. Chem. Eur. J. 2005, 11, 3668.
      (b) Xiao, Y. ; Wang, Z. ; Ding, K. Macromolecules 2006, 39, 128.

    9. [9]

      Trost, B. M.; Muller, C. J. Am. Chem. Soc. 2008, 130, 2438.  doi: 10.1021/ja711080y

    10. [10]

      (a) Trost, B. M. ; Yeh, V. S. C. Org. Lett. 2002, 4, 3513.
      (b) Trost, B. M. ; Quintard, A. Org. Lett. 2012, 14, 4698.

    11. [11]

      Friedel, C.; Crafts, J. M. C. R. Hebd. Seances Acad. Sci. 1877, 84, 1392.

    12. [12]

      Olah, G. A. ; Krishnamurti, R. ; Prakash, G. K. S. In Comprehensive Organic Synthesis, Eds. : Trost, B. M. ; Fleming, I., Pergamon Press, Oxford, 1991, vol. 3, p 293.

    13. [13]

      (a) Bandini, M. ; Melloni, A. ; Umani-Ronchi, A. Angew. Chem. , Int. Ed. 2004, 43, 550.
      (b) Poulsen, T. B. ; Jørgensen, K. A. Chem. Rev. 2008, 108, 2903.
      (c) You, S. -L. ; Cai, Q. ; Zeng, M. Chem. Soc. Rev. 2009, 38, 2190.
      (e) Lu, H. -H. ; Tan, F. ; Xiao, W. -J. Curr. Org. Chem. 2011, 15, 4022.

    14. [14]

      Liang, X.-R.; Fan, J.-Y.; Shi, F.; Su, W. K. Tetrahedron Lett. 2010, 51, 2505.  doi: 10.1016/j.tetlet.2010.02.160

    15. [15]

      (a) Wang, W. -T. ; Liu, X. -H. ; Cao, W. -D. ; Wang, J. ; Lin, L. -L. ; Feng, X. -M. Chem. -Eur. J. 2010, 16, 1664.
      (b) Hua, Y. -Z. ; Han, X. -W. ; Yang, X. -C. ; Song, X. ; Wang, M. -C. ; Chang, J. -B. J. Org. Chem. 2014, 79, 11690.

    16. [16]

      (a) Palomo, C. ; Oiarbide, M. ; Kardak, B. G. ; Garcıa, J. M. ; Linden, A. J. Am. Chem. Soc. 2005, 127, 4154.
      (b) Liu, L. ; Ma, H. ; Xiao, Y. ; Du, F. ; Qin, Z. ; Li, N. ; Fu, B. Chem. Commun. 2012, 48, 9281.

    17. [17]

      (a) Zeng, M. ; You, S. -L. Synlett 2010, 1289.
      (b) Lancianesi, S. ; Palmieri, A. ; Petrini, M. Chem. Rev. 2014, 114, 7108.
      (c) Yin, B. ; Wu, Y. ; Ma, H. ; Ma, X. ; Fu, B. ; Liu, J. Chin. J. Org. Chem. 2015, 35, 2119 (in Chinese).
      (殷伯翰, 吴燕华, 麻红利, 马晓东, 傅滨, 刘吉平, 有机化学, 2015, 35, 2119. ) 

    18. [18]

      Zhuo, C.-X.; Zhou, Y.; You, S.-L. J. Am. Chem. Soc. 2014, 136, 6590.  doi: 10.1021/ja5028138

    19. [19]

      (a) Wang, M. -C. ; Zhang, Q. -J. ; Zhao, W. -X. ; Wang, X. -D. ; Ding, X. ; Jing, T. -T. ; Song, M. -P. J. Org. Chem. 2008, 73, 168.
      (b) Hua, Y. -Z. ; Lu, L. -J. ; Huang, P. -J. ; Wei, D. -H. ; Tang, M. -S. ; Wang, M. -C. ; Chang, J. -B. Chem. -Eur. J. 2014, 20, 12394.
      (c) Hua, Y. -Z. ; Yang, X. -C. ; Liu, M. -M. ; Song, X. ; Wang, M. -C. ; Chang, J. -B. Macromolecules 2015, 48, 1651.
      (d) Hua, Y. -Z. ; Liu, M. -M. ; Huang, P. -J. ; Song, X. ; Wang, M. -C. ; Chang, J. -B. Chem. -Eur. J. 2015, 21, 11994.

    20. [20]

      (a) Bao, H. ; Wu, J. ; Li, H. ; Wang, Z. ; You, T. ; Ding, K. Eur. J. Org. Chem. 2010, 6722.
      (b) Bao, H. ; Wang, Z. ; You, T. ; Ding, K. Chin. J. Chem. 2013, 31, 67.

    21. [21]

      Therkelsen, F. D.; Hansen, A. L. L.; Pedersen, E. B.; Nielsen, C. Org. Biomol. Chem. 2003, 1, 2908.  doi: 10.1039/b303658h

  • 加载中
    1. [1]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    2. [2]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    3. [3]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    4. [4]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    5. [5]

      Jiao WangShuang-Yan LangZhen-Zhen ShenGui-Xian LiuJian-Xin TianYuan LiRui-Zhi LiuRui WenIn situ imaging of the interfacial processes manipulated by salt concentration on zinc anodes in zinc metal batteries. Chinese Chemical Letters, 2025, 36(4): 109815-. doi: 10.1016/j.cclet.2024.109815

    6. [6]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    7. [7]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    8. [8]

      Wenfeng ShaoChuanlin LiChenggang WangGuangsen DuShunshun ZhaoGuangmeng QuYupeng XingTianshuo GuoHongfei LiXijin Xu . Stabilization of zinc anode by trace organic corrosion inhibitors for long lifespan. Chinese Chemical Letters, 2025, 36(3): 109531-. doi: 10.1016/j.cclet.2024.109531

    9. [9]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    10. [10]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    11. [11]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    12. [12]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

    13. [13]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    14. [14]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    15. [15]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    16. [16]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    17. [17]

      Ningning ZhaoYuyan LiangWenjie HuoXinyan ZhuZhangxing HeZekun ZhangYoutuo ZhangXianwen WuLei DaiJing ZhuLing WangQiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332

    18. [18]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    19. [19]

      Xiaoxing JiXiaojuan LiChenggang WangGang ZhaoHongxia BuXijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388

    20. [20]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

Metrics
  • PDF Downloads(2)
  • Abstract views(1278)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return