Citation: Sun Yanna, Gao Huanhuan, Zhang Yamin, Wang Yunchuang, Kan Bin, Wan Xiangjian, Zhang Hongtao, Chen Yongsheng. An Efficient Ternary Organic Solar Cell with a Porphyrin Based Small Molecule Donor and Two Fullerene Acceptors[J]. Chinese Journal of Organic Chemistry, ;2018, 38(1): 228-236. doi: 10.6023/cjoc201706026 shu

An Efficient Ternary Organic Solar Cell with a Porphyrin Based Small Molecule Donor and Two Fullerene Acceptors

  • Corresponding author: Chen Yongsheng, yschen99@nankai.edu.cn
  • Received Date: 19 June 2017
    Revised Date: 19 July 2017
    Available Online: 30 January 2017

    Fund Project: the Naional Natrual Science Foundation of China 51373078the Naional Natrual Science Foundation of China 91433101Project supported by the Ministry of Science and Technology (No. 2014CB643502), the Naional Natrual Science Foundation of China (Nos. 51373078, 51422304, 91433101) and the Natrual Science Foundation of Tianjin City (No. 17JCZDJC31100)the Naional Natrual Science Foundation of China 51422304the Ministry of Science and Technology 2014CB643502the Natrual Science Foundation of Tianjin City 17JCZDJC31100

Figures(5)

  • Recently, ternary organic solar cells have emerged as a promising strategy to achieve both high performance and fabrication simplicity for organic solar cells. It has been proved that this strategy is an effective way to achieve improved short-circuit current density (Jsc) with complementary absorption or to get enhanced open-circuit voltage (Voc) through forming energy level cascade. In this work, we designed and synthesized a thieno[3, 2-b]thiphene-substituted porphyrin molecule flanked with two diketopyrrolopyrrole units by ethynylene bridges, named DEP-TT, which exhibited a very low energy bandgap of 1.31 eV and a broad light absorption to 898 nm. The power conversion efficiency (PCE) of binary devices based on DEP-TT and the acceptor [6, 6]-phenyl-C71-butyric-acid-methyl-ester (PC71BM) achieved 7.46% with a relatively low Voc of 0.75 V. Futhermore, the ternary solar cells with 10% indene-C60 bis-adduct (ICBA) achieved high PCE of 8.15%, with higher Voc, Jsc and a relatively higher PCE based on organic solar cells with a porphyrin-small molecule as the donor. This improved performance is believed to be due to the energy level cascade and synergistic effects of the two acceptors of PCBM and ICBA, which suggestes that the ternary bulk heterojunction (BHJ) strategy is a promising way to improve both Voc and Jsc simultaneously and thus overall performance for the same donor material.
  • 加载中
    1. [1]

      Heeger, A. J. Chem. Soc. Rev. 2010, 39, 2354.  doi: 10.1039/b914956m

    2. [2]

      Krebs, F. C. Sol. Energy Mater. Sol. Cells 2009, 93, 394.  doi: 10.1016/j.solmat.2008.10.004

    3. [3]

      Li, G.; Zhu, R.; Yang, Y. Nat. Photonics 2012, 6, 153.  doi: 10.1038/nphoton.2012.11

    4. [4]

      Lu, L.; Zheng, T.; Wu, Q.; Schneider, A. M.; Zhao, D.; Yu, L. Chem. Rev. 2015, 115, 12666.  doi: 10.1021/acs.chemrev.5b00098

    5. [5]

      Service, R. F. Science 2011, 332, 293.  doi: 10.1126/science.332.6027.293

    6. [6]

      Zhang, Z.-G.; Li, Y. Sci. China: Chem. 2015, 58, 192.  doi: 10.1007/s11426-014-5260-2

    7. [7]

      Baran, D.; Ashraf, R. S.; Hanifi, D. A.; Abdelsamie, M.; Gasparini, N.; Rohr, J. A.; Holliday, S.; Wadsworth, A.; Lockett, S.; Neophytou, M.; Emmott, C. J. M.; Nelson, J.; Brabec, C. J.; Amassian, A.; Salleo, A.; Kirchartz, T.; Durrant, J. R.; McCulloch, I. Nat. Mater. 2017, 16, 363.  doi: 10.1038/nmat4797

    8. [8]

      Bin, H.; Gao, L.; Zhang, Z.-G.; Yang, Y.; Zhang, Y.; Zhang, C.; Chen, S.; Xue, L.; Yang, C.; Xiao, M.; Li, Y. Nat. Commun. 2016, 7, 13651.  doi: 10.1038/ncomms13651

    9. [9]

      Dai, S.; Zhao, F.; Zhang, Q.; Lau, T.-K.; Li, T.; Liu, K.; Ling, Q.; Wang, C.; Lu, X.; You, W.; Zhan, X. J. Am. Chem. Soc. 2017, 139, 1336.  doi: 10.1021/jacs.6b12755

    10. [10]

      Jin, Y.; Chen, Z.; Dong, S.; Zheng, N.; Ying, L.; Jiang, X.-F.; Liu, F.; Huang, F.; Cao, Y. Adv. Mater. 2016, 28, 9811.  doi: 10.1002/adma.201603178

    11. [11]

      Kan, B.; Feng, H.; Wan, X.; Liu, F.; Ke, X.; Wang, Y.; Wang, Y.; Zhang, H.; Li, C.; Hou, J.; Chen, Y. J. Am. Chem. Soc. 2017, 139, 4929.  doi: 10.1021/jacs.7b01170

    12. [12]

      Kan, B.; Li, M.; Zhang, Q.; Liu, F.; Wan, X.; Wang, Y.; Ni, W.; Long, G.; Yang, X.; Feng, H.; Zuo, Y.; Zhang, M.; Huang, F.; Cao, Y.; Russell, T. P.; Chen, Y. J. Am. Chem. Soc. 2015, 137, 3886.  doi: 10.1021/jacs.5b00305

    13. [13]

      Li, S.; Ye, L.; Zhao, W.; Zhang, S.; Mukherjee, S.; Ade, H.; Hou, J. Adv. Mater. 2016, 28, 9423.  doi: 10.1002/adma.201602776

    14. [14]

      Li, Z.; Jiang, K.; Yang, G.; Lai, J. Y. L.; Ma, T.; Zhao, J.; Ma, W.; Yan, H. Nat. Commun. 2016, 7, 13094.  doi: 10.1038/ncomms13094

    15. [15]

      Lin, Y.; Zhao, F.; Wu, Y.; Chen, K.; Xia, Y.; Li, G.; Prasad, S. K. K.; Zhu, J.; Huo, L.; Bin, H.; Zhang, Z.-G.; Guo, X.; Zhang, M.; Sun, Y.; Gao, F.; Wei, Z.; Ma, W.; Wang, C.; Hodgkiss, J.; Bo, Z.; Inganas, O.; Li, Y.; Zhan, X. Adv. Mater. 2017, 29, 1604155.  doi: 10.1002/adma.v29.3

    16. [16]

      Liu, T.; Pan, X.; Meng, X.; Liu, Y.; Wei, D.; Ma, W.; Huo, L.; Sun, X.; Lee, T. H.; Huang, M.; Choi, H.; Kim, J. Y.; Choy, W. C. H.; Sun, Y. Adv. Mater. 2017, 29, 1604251.  doi: 10.1002/adma.201604251

    17. [17]

      Qiu, N.; Zhang, H.; Wan, X.; Li, C.; Ke, X.; Feng, H.; Kan, B.; Zhang, H.; Zhang, Q.; Lu, Y.; Chen, Y. Adv. Mater. 2017, 29, 1604964.  doi: 10.1002/adma.201604964

    18. [18]

      Vohra, V.; Kawashima, K.; Kakara, T.; Koganezawa, T.; Osaka, I.; Takimiya, K.; Murata, H. Nat. Photonics 2015, 9, 403.  doi: 10.1038/nphoton.2015.84

    19. [19]

      Yang, Y.; Zhang, Z.-G.; Bin, H.; Chen, S.; Gao, L.; Xue, L.; Yang, C.; Li, Y. J. Am. Chem. Soc. 2016, 138, 15011.  doi: 10.1021/jacs.6b09110

    20. [20]

      Yao, H.; Cui, Y.; Yu, R.; Gao, B.; Zhang, H.; Hou, J. Angew. Chem. 2017, 129, 3091.  doi: 10.1002/ange.201610944

    21. [21]

      Zhang, S.; Ye, L.; Zhao, W.; Yang, B.; Wang, Q.; Hou, J. Sci. China: Chem. 2015, 58, 248.  doi: 10.1007/s11426-014-5273-x

    22. [22]

      Zhao, F.; Dai, S.; Wu, Y.; Zhang, Q.; Wang, J.; Jiang, L.; Ling, Q.; Wei, Z.; Ma, W.; You, W.; Wang, C.; Zhan, X. Adv. Mater. 2017, 29, 1700144.  doi: 10.1002/adma.201700144

    23. [23]

      Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H. Nat. Energy 2016, 1, 15027.  doi: 10.1038/nenergy.2015.27

    24. [24]

      Ameri, T.; Khoram, P.; Min, J.; Brabec, C. J. Adv. Mater. 2013, 25, 4245.  doi: 10.1002/adma.v25.31

    25. [25]

      An, Q.; Zhang, F.; Zhang, J.; Tang, W.; Deng, Z.; Hu, B. Energy Environ. Sci. 2016, 9, 281.  doi: 10.1039/C5EE02641E

    26. [26]

      Lu, L.; Kelly, M. A.; You, W.; Yu, L. Nat. Photonics 2015, 9, 491.  doi: 10.1038/nphoton.2015.128

    27. [27]

      Yang, Y.; Chen, W.; Dou, L.; Chang, W.-H.; Duan, H.-S.; Bob, B.; Li, G. Nat. Photonics 2015, 9, 190.  doi: 10.1038/nphoton.2015.9

    28. [28]

      Huang, F. Sci. China: Chem. 2017, 60, 433.  doi: 10.1007/s11426-016-0518-6

    29. [29]

      Li, M.; Gao, K.; Wan, X.; Zhang, Q.; Kan, B.; Xia, R.; Liu, F.; Yang, X.; Feng, H.; Ni, W.; Wang, Y.; Peng, J.; Zhang, H.; Liang, Z.; Yip, H.-L.; Peng, X.; Cao, Y.; Chen, Y. Nat. Photonics 2017, 11, 85.  doi: 10.1038/nphoton.2016.240

    30. [30]

      You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C.-C.; Gao, J.; Li, G.; Yang, Y. Nat. Commun. 2013, 4, 1446.  doi: 10.1038/ncomms2411

    31. [31]

      Yusoff, A. R. b. M.; Kim, D.; Kim, H. P.; Shneider, F. K.; da Silva, W. J.; Jang, J. Energy Environ. Sci. 2015, 8, 303.  doi: 10.1039/C4EE03048F

    32. [32]

      Zheng, Z.; Zhang, S.; Zhang, M.; Zhao, K.; Ye, L.; Chen, Y.; Yang, B.; Hou, J. Adv. Mater. 2015, 27, 1189.  doi: 10.1002/adma.201404525

    33. [33]

      Gasparini, N.; Jiao, X.; Heumueller, T.; Baran, D.; Matt, G. J.; Fladischer, S.; Spiecker, E.; Ade, H.; Brabec, C. J.; Ameri, T. Nat. Energy 2016, 1, 16118.  doi: 10.1038/nenergy.2016.118

    34. [34]

      Liu, T.; Guo, Y.; Yi, Y.; Huo, L.; Xue, X.; Sun, X.; Fu, H.; Xiong, W.; Meng, D.; Wang, Z.; Liu, F.; Russell, T. P.; Sun, Y. Adv. Mater. 2016, 28, 10008.  doi: 10.1002/adma.201602570

    35. [35]

      Liu, T.; Huo, L.; Sun, X.; Fan, B.; Cai, Y.; Kim, T.; Kim, J. Y.; Choi, H.; Sun, Y. Adv. Energy Mater. 2016, 6, 1502109.  doi: 10.1002/aenm.201502109

    36. [36]

      Lu, H.; Zhang, J.; Chen, J.; Liu, Q.; Gong, X.; Feng, S.; Xu, X.; Ma, W.; Bo, Z. Adv. Mater. 2016, 28, 9559.  doi: 10.1002/adma.201603588

    37. [37]

      Nian, L.; Gao, K.; Liu, F.; Kan, Y.; Jiang, X.; Liu, L.; Xie, Z.; Peng, X.; Russell, T. P.; Ma, Y. Adv. Mater. 2016, 28, 8184.  doi: 10.1002/adma.v28.37

    38. [38]

      Xiao, L.; Gao, K.; Zhang, Y.; Chen, X.; Hou, L.; Cao, Y.; Peng, X. J. Mater. Chem. A 2016, 4, 5288.  doi: 10.1039/C6TA00783J

    39. [39]

      Nian, L.; Gao, K.; Jiang, Y.; Rong, Q.; Hu, X.; Yuan, D.; Liu, F.; Peng, X.; Russell, T. P.; Zhou, G. Adv. Mater. 2017, 29, 1700616.  doi: 10.1002/adma.201700616

    40. [40]

      Cheng, P.; Shi, Q.; Zhan, X. Acta Chim. Sinica 2015, 73, 252(in Chinese).

    41. [41]

      Cheng, P.; Yan, C.; Wu, Y.; Wang, J.; Qin, M.; An, Q.; Cao, J.; Huo, L.; Zhang, F.; Ding, L.; Sun, Y.; Ma, W.; Zhan, X. Adv. Mater. 2016, 28, 8021.  doi: 10.1002/adma.201602067

    42. [42]

      Yang, L.; Zhou, H.; Price, S. C.; You, W. J. Am. Chem. Soc. 2012, 134, 5432.  doi: 10.1021/ja211597w

    43. [43]

      Zhang, J.; Zhang, Y.; Fang, J.; Lu, K.; Wang, Z.; Ma, W.; Wei, Z. J. Am. Chem. Soc. 2015, 137, 8176.  doi: 10.1021/jacs.5b03449

    44. [44]

      Zhao, W.; Li, S.; Zhang, S.; Liu, X.; Hou, J. Adv. Mater. 2017, 29, 1604059.  doi: 10.1002/adma.v29.2

    45. [45]

      Guo, Y.; Zhu, H.; Liu, G.; Yan, H.; Zhu, B.; Li, S.; Sun, Y.; Li, G. Chin. J. Org. Chem. 2016, 36, 172(in Chinese).
       

    46. [46]

      Kadish, K. M. ; Smith, K. M. ; Guilard, R. The Porphyrin Handbook: Inorganic, Organometallic and Coordination Chemistry, Academic Press, San Diego, CA, 1999.

    47. [47]

      Lu, J.; Cai, W.; Zhang, G.; Liu, S.; Ying, L.; Huang, F. Acta Chim. Sinica 2015, 73, 1153(in Chinese).

    48. [48]

      Gao, K.; Li, L.; Lai, T.; Xiao, L.; Huang, Y.; Huang, F.; Peng, J.; Cao, Y.; Liu, F.; Russell, T. P.; Janssen, R. A. J.; Peng, X. J. Am. Chem. Soc. 2015, 137, 7282.  doi: 10.1021/jacs.5b03740

    49. [49]

      Gao, K.; Miao, J.; Xiao, L.; Deng, W.; Kan, Y.; Liang, T.; Wang, C.; Huang, F.; Peng, J.; Cao, Y.; Liu, F.; Russell, T. P.; Wu, H.; Peng, X. Adv. Mater. 2016, 28, 4727.  doi: 10.1002/adma.v28.23

    50. [50]

      Liang, T.; Xiao, L.; Gao, K.; Xu, W.; Peng, X.; Cao, Y. ACS Appl. Mater. Interfaces 2017, 9, 7131.  doi: 10.1021/acsami.6b15241

    51. [51]

      Xiao, L.; Chen, S.; Gao, K.; Peng, X.; Liu, F.; Cao, Y.; Wong, W. Y.; Wong, W. K.; Zhu, X. ACS Appl. Mater. Interfaces 2016, 8, 30176.  doi: 10.1021/acsami.6b09790

    52. [52]

      Cheng, P.; Li, Y.; Zhan, X. Energy Environ. Sci. 2014, 7, 2005.  doi: 10.1039/c3ee44202k

    53. [53]

      He, Y.; Chen, H.-Y.; Hou, J.; Li, Y. J. Am. Chem. Soc. 2010, 132, 5532.  doi: 10.1021/ja101780s

    54. [54]

      Xin, H.; Subramaniyan, S.; Kwon, T. W.; Shoaee, S.; Durrant, J. R.; Jenekhe, S. A. Chem. Mater. 2012, 24, 1995.  doi: 10.1021/cm300355e

    55. [55]

      Li, C. Z.; Chueh, C. C.; Yip, H. L.; O'Malley, K. M.; Chen, W. C.; Jen, A. K. Y. J. Mater. Chem. 2012, 22, 8574.  doi: 10.1039/c2jm30755c

    56. [56]

      Li, M.; Liu, F.; Wan, X.; Ni, W.; Kan, B.; Feng, H.; Zhang, Q.; Yang, X.; Wang, Y.; Zhang, Y.; Shen, Y.; Russell, T. P.; Chen, Y. Adv. Mater. 2015, 27, 6296.  doi: 10.1002/adma.201502645

  • 加载中
    1. [1]

      Yaojun LiYun LiShenglong LiaoYang LiShouchun Yin . Revolutionizing cancer therapies with organic photovoltaic non-fullerene acceptors: A deep dive into molecular engineering for advanced phototheranostics. Chinese Chemical Letters, 2025, 36(8): 110832-. doi: 10.1016/j.cclet.2025.110832

    2. [2]

      Junliang ZhouTian-Bing RenLin Yuan . The strategy to improve the brightness of organic small-molecule fluorescent dyes for imaging. Chinese Chemical Letters, 2025, 36(8): 110644-. doi: 10.1016/j.cclet.2024.110644

    3. [3]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    4. [4]

      Brandon BishopShaofeng HuangHongxuan ChenHaijia YuHai LongJingshi ShenWei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966

    5. [5]

      Jiawei Li Cheng Chen Mingyan Wu . Donor-acceptor type organic cocrystals for deep-red circularly polarized luminescence and two-photon excited emission. Chinese Journal of Structural Chemistry, 2025, 44(3): 100513-100513. doi: 10.1016/j.cjsc.2025.100513

    6. [6]

      Jiabin ZhangXiaoke ZhangLilei WangLingpeng YanXueli ChengTao Li . Fluorinated fused azobenzene boron-based polymer acceptors with 1000 nm absorbance edges for all-polymer solar cells. Chinese Chemical Letters, 2025, 36(7): 111064-. doi: 10.1016/j.cclet.2025.111064

    7. [7]

      Ali DaiZhiguo ZhengLiusheng DuanJian WuWeiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462

    8. [8]

      Yi-Ru BaiQing-Chuan DuanDong-Jie SengYing XuHong-Bo RenJie ZhangDan-Dan ShenLi YangHong-Min LiuShuo Yuan . A comprehensive review of small molecule drugs approved by the FDA in 2024: Advance and prospect. Chinese Chemical Letters, 2025, 36(10): 111025-. doi: 10.1016/j.cclet.2025.111025

    9. [9]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    10. [10]

      Wenxiang MaXinyu HeTianyi ChenDe-Li MaHongzheng ChenChang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099

    11. [11]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    12. [12]

      Xi Feng Ding-Yi Hu Zi-Jun Liang Mu-Yang Zhou Zhi-Shuo Wang Wen-Yu Su Rui-Biao Lin Dong-Dong Zhou Jie-Peng Zhang . A metal azolate framework with small aperture for highly efficient ternary benzene/cyclohexene/cyclohexane separation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100540-100540. doi: 10.1016/j.cjsc.2025.100540

    13. [13]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    14. [14]

      Aolei TanXiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276

    15. [15]

      Hyoseok KimChangyi CuiKohei TohGenyir AdoTetsuya OgawaYixin ZhangShin-ichi SatoYong-Beom LimHiroki KurataLu ZhouMotonari Uesugi . Discovery of a self-assembling small molecule that sequesters RNA-binding proteins. Chinese Chemical Letters, 2025, 36(5): 110135-. doi: 10.1016/j.cclet.2024.110135

    16. [16]

      Wen SuSiying LiuQingfu ZhangZhongyan ZhouNa WangLei Yue . Temperature-controlled electrospray ionization tandem mass spectrometry study on protein/small molecule interaction. Chinese Chemical Letters, 2025, 36(5): 110237-. doi: 10.1016/j.cclet.2024.110237

    17. [17]

      Jiawei ZhuYucheng XiongXiaoxue BaiChenlong XieBaichen XiongYao ChenHaopeng Sun . Small molecule-drug conjugates: Mechanistic insights and strategic design for enhanced cancer therapy. Chinese Chemical Letters, 2025, 36(10): 110799-. doi: 10.1016/j.cclet.2024.110799

    18. [18]

      Zhi LiShuya PanYuan TianShaowei LiuWeifeng WeiJinlin WangTianfeng ChenLing Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018

    19. [19]

      Bohao LiuXue JiangRuizhi NingHeng ZhaoYanpeng ZhangJunnan ZhangTianqing LiuDanyao QuYinhui BaoZhanchen GuoXiaoyan ZengShan GaoKun FanRunyi TaoJian JiGuangjian ZhangWeiwei Wu . Tedlar bag free: Accurate volatolomics of ⅠA stage non-small cell lung cancer come out in wash. Chinese Chemical Letters, 2025, 36(6): 110301-. doi: 10.1016/j.cclet.2024.110301

    20. [20]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

Metrics
  • PDF Downloads(11)
  • Abstract views(1990)
  • HTML views(154)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return