Citation: Zhu Wenming, Ying Weiwei, Wei Wenting. Progress in Carbon-Oxygen Bonds Formation Using tert-Butyl Hydroperoxide[J]. Chinese Journal of Organic Chemistry, ;2017, 37(11): 2841-2849. doi: 10.6023/cjoc201706005 shu

Progress in Carbon-Oxygen Bonds Formation Using tert-Butyl Hydroperoxide

  • Corresponding author: Wei Wenting, weiwenting@nbu.edu.cn
  • #These authors contributed equally to this work
  • Received Date: 4 June 2017
    Revised Date: 2 July 2017
    Available Online: 14 November 2017

    Fund Project: Project supported by the Research Funds of Ningbo University (No. ZX2016000706), the Foundation of Ningbo University (No. XYL17009) and the K. C. Wong Magna Fund in Ningbo Universitythe Foundation of Ningbo University XYL17009the Research Funds of Ningbo University ZX2016000706

Figures(7)

  • The formation of carbon-oxygen bonds is one of the hot topics in the field of organic synthesis methodology. Recently, the remarkable progress has been made in construction of carbon-oxygen bonds using tert-butyl hydroperoxide in radical reactions. The present protocol, which utilizes tert-butyl hydroperoxide as oxidant and oxygen source, provides a green and atom economy approach to ketones, esters and alcohols etc. This review will summarize the recent development in this area on the basis of different chemical bonds.
  • 加载中
    1. [1]

      Turner, N. J. Chem. Rev. 2011, 111, 4073.  doi: 10.1021/cr200111v

    2. [2]

      Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318.  doi: 10.1021/cr068006f

    3. [3]

      Liu, A.-S.; Wang, X.-G.; Ou, X.-M.; Liu, S.-D.; Mo, H.-B.; Liu, X.-P.; Wang, T.-J.; He, H.-J.; Hu, L.; Huang, M.-Z.; Liu, Z.-J.; Yao, J.-R. Chin. J. Org. Chem. 2008, 28, 1772 (in Chinese).
       

    4. [4]

      Shang, X.-J.; Liu, Z.-Q. Acta Chim. Sinica 2015, 73, 1275 (in Chinese).
       

    5. [5]

      Lu, Q.-Q.; Yi, H.; Lei, A. W. Acta Chim. Sinica 2015, 73, 1245 (in Chinese).  doi: 10.3969/j.issn.0253-2409.2015.10.013

    6. [6]

      Liu, Y.; Liu, Z.; Cui, Y. D. Chin. J. Chem. 2015, 33, 175.  doi: 10.1002/cjoc.v33.2

    7. [7]

      Aranyos, A.; Old, D. W.; Kiyomori, A.; Wolfe, J. P.; Sadighi, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 4369.  doi: 10.1021/ja990324r

    8. [8]

      Gowrisankar, S.; Sergeev, A. G.; Anbarasan, P.; Spannenberg, A.; Neumann, H.; Beller, M. J. Am. Chem. Soc. 2010, 132, 11592.  doi: 10.1021/ja103248d

    9. [9]

      Palucki, M.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 10333.  doi: 10.1021/ja962408v

    10. [10]

      Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046.  doi: 10.1002/(ISSN)1521-3773

    11. [11]

      Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 6954.  doi: 10.1002/anie.v48:38

    12. [12]

      Torraca, K. E.; Huang, X.; Parrish, C. A.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 10770.  doi: 10.1021/ja016863p

    13. [13]

      Fagan, P. J.; Hauptman, E.; Shapiro, R.; Casalnuovo, A. J. Am. Chem. Soc. 2000, 122, 5043.  doi: 10.1021/ja000094c

    14. [14]

      Niu, J.; Guo, P.; Kang, J.; Li, Z.; Xu, J.; Hu, S. J. Org. Chem. 2009, 74, 5075.  doi: 10.1021/jo900600m

    15. [15]

      Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790.  doi: 10.1021/ja061715q

    16. [16]

      Jiang, T. S.; Wang, G. W. J. Org. Chem. 2012, 77, 9504.  doi: 10.1021/jo301964m

    17. [17]

      Yin, Z.-W.; Jiang, X.-Q.; Sun, P.-P. J. Org. Chem. 2013, 78, 10002.  doi: 10.1021/jo401623j

    18. [18]

      Shi, S.-P.; Kuang, C.-X. J. Org. Chem. 2014, 79, 6105.  doi: 10.1021/jo5008306

    19. [19]

      Xie, Y.-X.; Song, R.-J.; Xiang, J.-N.; Li, J.-H. Chin. J. Org. Chem. 2012, 32, 1555 (in Chinese).
       

    20. [20]

      He, H.; Pei, B.-J.; Lee, A. W. M. Green Chem. 2009, 11, 1857.  doi: 10.1039/b916265h

    21. [21]

      Yin, Z.-W.; Sun, P.-P. J. Org. Chem. 2012, 77, 11339.  doi: 10.1021/jo302125h

    22. [22]

      Ali, W.; Behera, A.; Guin, S.; Patel, B. K. J. Org. Chem. 2015, 80, 5625.  doi: 10.1021/acs.joc.5b00501

    23. [23]

      Khemnar, A. B.; Bhanage, B. M. Org. Biomol. Chem. 2015, 46, 9631.
       

    24. [24]

      Khatun, N.; Banerjee, A.; Santra, S. K.; Ali, W.; Patel, B. K. RSC Adv. 2015, 5, 36461.  doi: 10.1039/C5RA03462K

    25. [25]

      Chen, X.-L.; Li, Y.; Wu, M.-H.; Guo, H.-B.; Jiang, L.-Q.; Wang, J.; Sun, S.-F. RSC Adv. 2016, 6, 102023.  doi: 10.1039/C6RA20966A

    26. [26]

      Hashemi, H.; Saberi, D.; Poorsadeghic, S.; Niknam, K. RSC Adv. 2017, 7, 7619.  doi: 10.1039/C6RA27921J

    27. [27]

      Tan, J.-J.; Zheng, T.-Y.; Yu, Y.-Q.; Xu, K. RSC Adv. 2017, 7, 15176.  doi: 10.1039/C7RA00352H

    28. [28]

      Zhang, X.-B.; Wang, L. Green Chem. 2012, 14, 2141.  doi: 10.1039/c2gc35489f

    29. [29]

      Zhao, Q.; Miao, T.; Zhang, X. B.; Zhou, W.; Wang, L. Org. Biomol. Chem. 2013, 11, 1867.  doi: 10.1039/c3ob27433k

    30. [30]

      Zhang, X. B.; Wang, M.; Zhang, Y. C.; Wang, L. RSC Adv. 2013, 3, 1311.  doi: 10.1039/C2RA22116K

    31. [31]

      Behera, A.; Ali, W.; Tripathy, M.; Sahoo, D.; Patel, B. K. RSC Adv. 2016, 6, 91308.  doi: 10.1039/C6RA16118A

    32. [32]

      Majji, G.; Rajamanickam, S.; Khatun, N.; Santra, S.-K.; Patel, B. K. J. Org. Chem. 2015, 80, 3440.  doi: 10.1021/jo502903d

    33. [33]

      Wang, Q.-Q.; Wang, Z.-X.; Xu, Y.-S.; Zhang, X.-Y.; Fan, X.-S. Asian J. Org. Chem. 2016, 5, 1304.  doi: 10.1002/ajoc.v5.11

    34. [34]

      Majji, G.; Guin, S.; Gogoi, A.; Rout, S. K.; Pate, B. K. Chem. Commun. 2013, 49, 3031.  doi: 10.1039/c3cc40832a

    35. [35]

      Du, B.; Jina, B.; Sun, P.-P. Org. Biomol. Chem. 2014, 12, 4586.  doi: 10.1039/C4OB00520A

    36. [36]

      Zhao, J.-C.; Fang, H.; Han, J.; Pan, Yi. Org. Lett. 2014, 16, 2530.  doi: 10.1021/ol5009119

    37. [37]

      Guo, S.-J.; Yu, J.-T.; Dai, Q.; Yang, H.-T.; Cheng, J. Chem. Commun. 2014, 50, 6240.  doi: 10.1039/c4cc01652a

    38. [38]

      Azizi, K.; Karim, M.; Heydari, A. RSC Adv. 2014, 4, 31817.  doi: 10.1039/C4RA04215H

    39. [39]

      Liu, F.-Y.; Zhang, K.; Liu, Y.-F.; Chen, S.; Chen, Y.-P.; Zhang, D.-L.; Lin, C.-F.; Wang, B. RSC Adv. 2017, 7, 7158.  doi: 10.1039/C6RA26679G

    40. [40]

      Xu, J.-N.; Song, Q.-L. Chin. J. Org. Chem. 2016, 36, 1151 (in Chinese).
       

    41. [41]

      Jiang, H.-F.; Huang, H.-W.; Cao, H.; Qi, C.-R. Org. Lett. 2010, 12, 5561.  doi: 10.1021/ol1023085

    42. [42]

      Belala, M.; Khan, A. T. RSC Adv. 2016, 6, 18891.  doi: 10.1039/C5RA27993C

    43. [43]

      Khatun, N.; Banerjee, A.; Santra, S. K.; Behera, A.; Patel, B. K. RSC Adv. 2014, 4, 54532.  doi: 10.1039/C4RA11014E

    44. [44]

      Wei, W.-T.; Yang, X.-H.; Li, H.-B.; Li, J.-H. Adv. Synth. Catal. 2015, 357, 59.  doi: 10.1002/adsc.v357.1

    45. [45]

      Wei, W.; Zhang, C.; Xu, Y.; Wan, X. B. Chem. Commun. 2011, 47, 10827.  doi: 10.1039/c1cc14602e

    46. [46]

      Yang, X.-H.; Wei, W.-T.; Li, H.-B.; Song, R.-J.; Li, J.-H. Chem. Commun. 2014, 50, 12867.  doi: 10.1039/C4CC05051G

    47. [47]

      Yang, W.-C.; Weng, S.-S.; Ramasamy, A.; Rajeshwaren, G.; Liao, Y.-Y.; Chen, C.-T. Org. Biomol. Chem. 2015, 13, 2385.  doi: 10.1039/C4OB02621G

    48. [48]

      Lan, X.-W.; Wang, N.-X.; Zhang, W.; Wen, J.-L.; Bai, C.-B.; Xing, Y.-L.; Li, Y.-H. Org. Lett. 2015, 17, 4460.  doi: 10.1021/acs.orglett.5b02116

    49. [49]

      Wei, W.-T.; Li, H.-B.; Song, R.-J.; Li, J.-H. Chem. Commun. 2015, 51, 11325.  doi: 10.1039/C5CC03468J

    50. [50]

      Jiang, J.-W.; Liu, J.-J.; Yang, L.; Shao, Y.; Cheng, J.; Bao, X.-G.; Wan, X.-B. Chem. Commun. 2015, 51, 14728.  doi: 10.1039/C5CC05183E

    51. [51]

      Banerjee, A.; Santra, S. K.; Khatun, N.; Ali, W.; Patel, B. K. Chem. Commun. 2015, 51, 15422.  doi: 10.1039/C5CC06200D

    52. [52]

      Yi, N.-N.; Zhang, H.; Xu, C.-H.; Deng, W.; Wang, R.-J.; Peng, D.-M.; Zeng, Z.-B.; Xiang, J.-J. Org. Lett. 2016, 18, 1780.  doi: 10.1021/acs.orglett.6b00498

    53. [53]

      Shi, E.; Liu, J. J.; Liu, C. M.; Shao, Y.; Wang, H. H.; Lv, Y. Z.; Ji, M. S.; Bao, X. G.; Wan, X. B. J. Org. Chem. 2016, 81, 5878.  doi: 10.1021/acs.joc.6b00575

    54. [54]

      Du, P.; Li, H.-H.; Wang, Y.-X.; Cheng, J.; Wan, X.-B. Org. Lett. 2014, 16, 6350.  doi: 10.1021/ol503128j

    55. [55]

      Zhang, J.; Jiang, J. W.; Xu, D. M.; Luo, Q.; Wang, H. X.; Chen, J. J.; Li, H. H.; Wang, Y. X.; Wan, X. B. Angew. Chem., Int. Ed. 2015, 54, 1231.  doi: 10.1002/anie.201408874

    56. [56]

      Ling, J.-Y.; Zhang, J.; Zhao, Y.-W.; Xu, Y.-D.; Wang, H.-H.; Lv, Y.-Z.; Ji, M.-S.; Ma, L.; Maa, M.-H.; Wan, X.-B. Org. Biomol. Chem. 2016, 14, 5310.  doi: 10.1039/C6OB00873A

    57. [57]

      Liu, C. M.; Shi, E.; Xu, F.; Luo, Q.; Wang, H. X.; Chen, J. J.; Wan, X. B. Chem. Commun. 2015, 51, 1214.  doi: 10.1039/C4CC07833K

    58. [58]

      Luo, Q.; Liu, C. M.; Tong, J. J.; Shao, Y.; Shan, W. Y.; Wang, H. H.; Zheng, H.; Cheng, J.; Wan, X. B. J. Org. Chem. 2016, 81, 3103.  doi: 10.1021/acs.joc.5b02664

    59. [59]

      Ratnikov, M. O.; Farkas, L. E.; McLaughlin, E. C.; Chiou, G.; Choi, H.; El-Khalafy, S. H.; Doyle, M. P. J. Org. Chem. 2011, 76, 2585.  doi: 10.1021/jo1024865

    60. [60]

      Dong, J.-W.; Liu, P.; Sun, P.-P. J. Org. Chem. 2015, 80, 2925.  doi: 10.1021/acs.joc.5b00167

    61. [61]

      Duan, S.-T.; Xu, Y.-S.; Zhang, X.-Y.; Fan, X.-S. Chem. Commun. 2016, 52, 10529.  doi: 10.1039/C6CC04756D

    62. [62]

      Dang, P.; Zheng, Z.-L.; Liang, Y. J. Org. Chem. 2017, 82, 2263.  doi: 10.1021/acs.joc.6b02943

    63. [63]

      Chen, X.; Tan, Z.; Gui, Q.-W.; Hu, L.; Liu, J.-D.; Wu, J.; Wang, G.-W. Chem. Eur. J. 2016, 22, 6218.  doi: 10.1002/chem.v22.18

    64. [64]

      Zi, Y.; Cai, Z.-J.; Wang, S.-Y.; Ji, S.-J. Org. Lett. 2014, 16, 3094.  doi: 10.1021/ol501203q

    65. [65]

      Yan, K.-L.; Yang, D.-S.; Wei, W.; Li, G.-Q.; Sun, M.-Y.; Zhang, Q.-Y.; Tian, L.-J.; Wang, H. RSC Adv. 2015, 5, 100102.  doi: 10.1039/C5RA17740E

    66. [66]

      Luo, W.-K.; Shi, X.; Zhou, W.; Yang, L. Org. Lett. 2016, 18, 2036.  doi: 10.1021/acs.orglett.6b00646

    67. [67]

      Kong, L.-K.; Wang, M.-D.; Zhang, F.-F.; Xu, M.-R.; Li, Y.-Z. Org. Lett. 2016, 18, 6124.  doi: 10.1021/acs.orglett.6b03131

    68. [68]

      Zhang, J.; Lu, Q.-Q.; Liu, C.; Lei, A. Chin. J. Org. Chem. 2015, 35, 743 (in Chinese).
       

    69. [69]

      Xia, X.-F.; Zhang, L.-L.; Song, X.-R.; Niu, Y.-N.; Liu, X.-Y.; Liang, Y.-M. Chem. Commun. 2013, 49, 1410.  doi: 10.1039/c2cc37805a

    70. [70]

      Gogoi, A.; Modi, A.; Guin, S.; Rout, S. K.; Das, D.; Patel, B. K. Chem. Commun. 2014, 50, 10445.  doi: 10.1039/C4CC04407J

    71. [71]

      Rout, S. K.; Guin, S.; Gogoi, A.; Majji, G.; Patel, B. K. Org. Lett. 2014, 16, 1614.  doi: 10.1021/ol500224e

    72. [72]

      Zhang, P.-B.; Zhang, L.-L.; Gao, Y.-Z.; Xu, J.; Fang, H.; Tang, G.; Zhao, Y.-F. Chem. Commun. 2015, 51, 7839.  doi: 10.1039/C5CC01904D

    73. [73]

      Li, Y.-J.; Yan, N.; Liu, C.-H.; Yu, Y.; Zhao, Y.-L. Org. Lett. 2017, 19, 1160.  doi: 10.1021/acs.orglett.7b00200

  • 加载中
    1. [1]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    2. [2]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    3. [3]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    4. [4]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    5. [5]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    6. [6]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    7. [7]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    8. [8]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    9. [9]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    10. [10]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    11. [11]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    12. [12]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    13. [13]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    14. [14]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    15. [15]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    16. [16]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    17. [17]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    18. [18]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    19. [19]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    20. [20]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

Metrics
  • PDF Downloads(75)
  • Abstract views(10597)
  • HTML views(1474)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return