Citation: Liao Fumin, Yu Jinsheng, Zhou Jian. Recent Advances in the Highly Stereoselective Synthesis of Tri-or Tetra-substituted Monofluoroalkenes[J]. Chinese Journal of Organic Chemistry, ;2017, 37(9): 2175-2186. doi: 10.6023/cjoc201705001 shu

Recent Advances in the Highly Stereoselective Synthesis of Tri-or Tetra-substituted Monofluoroalkenes

  • Corresponding author: Yu Jinsheng, yujinsheng2011@163.com Zhou Jian, jzhou@chem.ecnu.edu.cn
  • Received Date: 1 May 2017
    Revised Date: 28 June 2017
    Available Online: 7 September 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21472049)the National Natural Science Foundation of China 21472049

Figures(25)

  • Monofluoroalkenes have found applications in many areas of research, including the design and development new materials and drug. The highly stereoselective synthesis of this privileged structural motif has attracted great synthetic attention. This review summarizes recent progresses in highly stereoselective synthesis of monofluoroalkenes from aldehydes, ketones and diazo compounds, other substrates such as alkynes, alkenyl metallic species and alkenes are also included. The advantages and disadvantages of different methods are discussed.
  • 加载中
    1. [1]

    2. [2]

      (a) Hiyama, T. In Organofluorine Compounds:Chemistry and Ap-plications, Ed.:Yamamoto, H., Springer-Verlag, Berlin, 2000.
      (b) Fluorine in Medicinal Chemistry and Chemical Biology, Ojima, I. Ed.; Wiley-Blackwell:United Kingdom, 2009. For reaviews:
      (c) Bégué, J.-P.; Bonnet-Delphon, D. J. Fluorine Chem. 2006, 127, 992.
      (d) Kirk, K. L. J. Fluorine Chem. 2006, 127, 1013.
      (e) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
      (f) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
      (g) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
      (h) Jeschke, P. ChemBioChem 2004, 5, 570.
      (i) Pagliaro, M.; Ciriminna, R. J. Mater. Chem. 2005, 15, 4981.
      (j) Ni, C.; Hu, J. Chem. Soc. Rev. 2016, 45, 5441.

    3. [3]

      Thayer, A. M. Chem. Eng. News 2006, 84, 15.

    4. [4]

      (a) Osada, S.; Sano, S.; Ueyama, M.; Chuman, Y.; Kodama, H.; Sakaguchi, K. Bioorg. Med. Chem. 2010, 18, 605.
      (b) Malo-Forest, M.; Landelle, G.; Roy, J.-A.; Lacroix, J.; Gaudreault, R.-C.; Paquin, J.-F. Bioorg. Med. Chem. Lett. 2013, 23, 1712.
      (c) Dutheuil, G.; Couve-Bonnaire, S.; Pannecoucke, X. Angew. Chem. Int. Ed. 2007, 46, 1290.
      (d) Wong, O. A.; Shi, Y. A. J. Org. Chem. 2009, 74, 8377.
      (e) Guérin, D.; Gaumont, A.-C.; Dez, I.; Mauduit, M.; Couve-Bonnaire, S.; Pannecoucke, X. ACS Catal. 2014, 4, 2374.
      (f) Dai, W.; Xiao, J.; Jin, G.; Wu, J.; Cao, S. J. Org. Chem. 2014, 79, 10537.

    5. [5]

      (a) Shen, Q.; Huang, Y.-G.; Liu, C.; Xiao, J.-C.; Chen, Q.-Y.; Guo, Y. J. Fluorine Chem. 2015, 179, 14.
      (b) Tian, P.; Feng, C.; Loh, T.-P. Nat. Commun. 2015, 6, 7472.
      (c) Zhang, X.; Lin, Y.; Zhang, J.; Cao, S. RSC Adv. 2015, 5, 7905.
      (d) Wu, J.; Xiao, J.; Dai, W.; Cao, S. RSC Adv. 2015, 5, 34498.
      (e) Xiong, Y.; Huang, T.; Ji, X.; Wu, J.; Cao, S. Org. Biomol. Chem. 2015, 13, 7398.
      (f) Dai, W.; Shi, H.; Zhao, X.; Cao, S. Org. Lett. 2016, 18, 4284.
      (g) Kong, L.; Zhou, X.; Li, X. Org. Lett. 2016, 18, 6320.

    6. [6]

      (a) Liu, G. Org. Biomol. Chem. 2012, 10, 6243.
      (b) Akana, J. A.; Bhattacharyya, K. X.; Müller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2007, 129, 7736.
      (c) Gorske, B. C.; Mbofana, C. T.; Miller, S. J. Org. Lett. 2009, 11, 4318.
      (d) Schuler, M.; Silva, F.; Bobbio, C.; Tessier, A.; Gouverneur, V. Angew. Chem. Int. Ed. 2008, 47, 7927.
      (e) de Haro, T.; Nevado, C. Chem. Commun. 2011, 47, 248;
      (f) Lan, Y.; Hammond, G. B. Org. Lett. 2002, 4, 2437.
      (g) Zhou, C.; Ma, Z.; Gu, Z.; Fu, C.; Ma, S. J. Org. Chem. 2008, 73, 772.
      (h) Cui, H. F.; Chai, Z.; Zhao, G.; Zhu, S. Z. Chin. J. Chem. 2009, 27, 189.
      (i) Lü, B.; Fu, C.; Ma, S. Org. Biomol. Chem. 2010, 8, 274.

    7. [7]

      (a) Couve-Bonnaire, S.; Cahard, D.; Pannecoucke, X. Org. Biomol. Chem. 2007, 5, 1151.
      (b) Yanai, H.; Taguchi, T. Eur. J. Org. Chem. 2011, 5939.
      (c) Landelle, G.; Bergeron, M.; Turcotte-Savard, M.-O.; Paquin, J.-F. Chem. Soc. Rev. 2011, 40, 2867.
      (d) Champagne, P. A.; Desroches, J.; Hamel, J.-D.; Vandamme, M.; Paquin, J.-F. Chem. Rev. 2015, 115, 9073.
      (e) Drouin, M.; Hamel, J.-D.; Paquin, J.-F. Synlett 2016, 27, 821.
      (f) Zhang, X.; Cao, S. Tetrahedron Lett. 2017, 58, 375.

    8. [8]

      Schlosser, M.; Zimmermann, M. Synthesis 1969, 75.

    9. [9]

      Cox, D. G.; Gurusamy, N.; Burton, D. J. J. Am. Chem. Soc. 1985, 107, 2811.  doi: 10.1021/ja00295a046

    10. [10]

      (a) Lei, X. S.; Dutheuil, G.; Pannecoucke, X.; Quirion, J. C. Org. Lett. 2004, 6, 2101.
      (b) Zoute, L.; Dutheuil, G.; Quirion, J.-C.; Jubault, P.; Pannecoucke, X. Synthesis 2006, 3409.

    11. [11]

      Burton, D. J.; Yang, Z.-Y.; Qiu, W. Chem. Rev. 1996, 96, 1641.  doi: 10.1021/cr941140s

    12. [12]

      Machleidt, H.; Wessendorf, R. Justus Liebigs Ann. Chem. 1964, 674, 1.  doi: 10.1002/(ISSN)1099-0690

    13. [13]

      Moghadam, G. E.; Penne, J. S. Bull. Soc. Chim. Fr. 1985, 448.

    14. [14]

      Sano, S.; Matsumoto, T.; Nakao, M. Tetrahedron Lett. 2014, 55, 4480.  doi: 10.1016/j.tetlet.2014.06.063

    15. [15]

      Chevrie, D.; Lequeux, T.; Demoute, J. P.; Pazenok, S. Tetrahedron Lett. 2003, 44, 8127.  doi: 10.1016/j.tetlet.2003.09.027

    16. [16]

      Ghosh, A. K.; Zajc, B. Org. Lett. 2006, 8, 1553.  doi: 10.1021/ol060002+

    17. [17]

      (a) Zajc, B.; Kake, S. Org. Lett. 2006, 8, 4457.
      (b) Pfund, E.; Lebargy, C.; Rouden, J.; Lequeux, T. J. Org. Chem. 2007, 72, 7871.

    18. [18]

      (a) Ghosh, A. K.; Banerjee, S.; Sinha, S.; Kang, S. B.; Zajc, B. J. Org. Chem. 2009, 74, 3689.
      (b) He, M.; Ghosh, A. K.; Zajc, B. Synlett 2008, 999.

    19. [19]

      Alonso, D. A.; Fuensanta, M.; Gómez-Bengoa, E.; Nájera, C. Adv. Synth. Catal. 2008, 350, 1823.  doi: 10.1002/adsc.v350:11/12

    20. [20]

      Larnaud, F.; Pfund, E.; Linclau, B.; Lequeux, T. Tetrahedron 2014, 70, 5632.  doi: 10.1016/j.tet.2014.06.081

    21. [21]

      Zhao, Y.; Jiang, F.; Hu, J. J. Am. Chem. Soc. 2015, 137, 5199.  doi: 10.1021/jacs.5b02112

    22. [22]

      Satoh, T.; Itoh, N.; Onda, K.; Kitoh, Y.; Yamakawa, K. Bull. Chem. Soc. Jpn. 1992, 65, 2800.  doi: 10.1246/bcsj.65.2800

    23. [23]

      Chevrie, D.; Lequeux, T.; Pommelet, J.-C. Org. Lett. 1999, 1, 1539.  doi: 10.1021/ol990178u

    24. [24]

      Boys, M. L.; Collington, E. W.; Finch, H.; Swanson, S.; Whitehead, J. F. Tetrahedron Lett. 1988, 29, 3365.  doi: 10.1016/0040-4039(88)85163-3

    25. [25]

      (a) Zhang, W.; Huang, W.; Hu, J. Angew. Chem. Int. Ed. 2009, 48, 9858.
      (b) Shen, X.; Hu, J. Eur. J. Org. Chem. 2014, 4437.
      (c) Liu, Q.; Shen, X.; Ni, C.; Hu, J. Angew. Chem. Int. Ed. 2017, 56, 619.

    26. [26]

      Welch, J. T.; Herbert, R. W. J. Org. Chem. 1990, 55, 4782.  doi: 10.1021/jo00303a003

    27. [27]

      Michida, M.; Mukaiyama, T. Chem. Lett. 2008, 37, 890.  doi: 10.1246/cl.2008.890

    28. [28]

      (a) Barma, D. K.; Kundeu, A.; Zhang, H.; Mioskowski, C.; Falck, J. R. J. Am. Chem. Soc. 2003, 125, 3218.
      (b) Falck, J. R.; Bojet, R.; Barma, D. K.; Bandyopadhyay, A.; Joseph, S.; Mioskowski, C. J. Org. Chem. 2006, 71, 8178.
      (c) Feng, Z.; Min, Q.-Q.; Zhao, H.-Y.; Gu, J.-W.; Zhang, X.Angew. Chem. Int. Ed. 2015, 54, 1270.

    29. [29]

      Lemonnier, G.; Zoute, L.; Dupas, G.; Quirion, J.-C.; Jubault, P. J. Org. Chem. 2009, 74, 4124.  doi: 10.1021/jo900422m

    30. [30]

      Augustine, J.-K.; Bombrun, A.; Venkatachaliah, S.; Jothi, A. Org. Biomol. Chem. 2013, 11, 8065.  doi: 10.1039/c3ob41592a

    31. [31]

      Cao, C.-R.; Ou, S.; Jiang, M.; Liu, J.-T. Org. Biomol. Chem. 2014, 12, 467.  doi: 10.1039/C3OB42093K

    32. [32]

      (a) Grundmann, C. Justus. Liebigs Ann. Chem. 1938, 536, 29.
      (b) Font, J.; Serratosa, F.; Valls, J. Chem. Commun. 1970, 721.
      (c) Kulkowit, S.; McKervey, M. A. J. Chem. Soc., Chem. Commun. 1978, 1069.
      (d) Baratta, W.; Del Zotto, A.; Rigo, P. Chem. Commun. 1997, 2163.
      (e) Del Zotto, A.; Baratta, W.; Verardo, G.; Rigo, P. Eur. J. Org. Chem. 2000, 2795.
      (f) Doyle, M. P.; Hu, W.; Phillips, I. M. Org. Lett. 2000, 2, 1777.
      (g) Greenman, K. L.; Carter, D. S.; Van Vranken, D. L. Tetrahedron 2001, 57, 5219.
      (h) Doyle, M. P.; Yan, M. J. Org. Chem. 2002, 67, 602;
      (i) Li, G.-Y.; Che, C.-M. Org. Lett. 2004, 6, 1621.
      (j) Hodgson, D. M.; Angrish, D. Chem. Commun. 2005, 4902.
      (k) Chen, S.; Wang, J. Chem. Commun. 2008, 4198;
      (l) Xiao, Q.; Ma, J.; Yang, Y.; Zhang, Y.; Wang, J. Org. Lett. 2009, 11, 4732.
      (m) Hansen, J. H.; Parr, B. T.; Pelphrey, P.; Jin, Q.; Autschbach, J.; Davies, H. M. L.Angew. Chem. Int. Ed. 2011, 50, 2544.
      (n) Xia, Y.; Liu, Z.; Xiao, Q.; Qu, P.; Ge, R.; Zhang, Y.; Wang, J. Angew. Chem. Int. Ed. 2012, 51, 5714.
      (o) Hu, M.; He, Z.; Gao, B.; Li, L.; Ni, C.; Hu, J. J. Am. Chem. Soc. 2013, 135, 17302.
      (p) Xiao, Q.; Zhang, Y.; Wang, J. Acc. Chem. Res. 2013, 46, 236.
      (q) Zhang, D.; Xu, G.; Ding, D.; Zhu, C.; Li, J.; Sun, J. Angew. Chem. Int. Ed. 2014, 53, 11070.
      (r) Hu, M.; Ni, C.; Li, L.; Han, Y.; Hu, J. J. Am. Chem. Soc. 2015, 137, 14496.
      (s) Zhu, C.; Xu, G.; Liu, K.; Qiu, L.; Peng, S.; Sun, J. Chem. Commun. 2015, 51, 12768.
      (t) Zhu, C.; Xu, G.; Ding, D.; Qiu, L.; Sun, J. Org. Lett. 2015, 17, 4244.
      (u) Zhang, Z.; Yu, W.; Wu, C.; Wang, C.; Zhang, Y.; Wang, J. Angew. Chem. Int. Ed. 2016, 55, 273.
      (v) Feng, S.; Mo, F.; Xia, Y.; Liu, Z.; Liu, Z.; Zhang, Y.; Wang, J. Angew. Chem. Int. Ed. 2016, 55, 15401.

    33. [33]

      (a) Fuchigami, T.; Hayashi, T.; Konno, A. Tetrahedron Lett. 1992, 33, 3161.
      (b) Usuki, Y.; Iwaoka, M.; Tomoda, S. J. Chem. Soc., Chem. Commun. 1992, 1148.

    34. [34]

      (a) Ivanova, M. V.; Bayle, A.; Besset, T.; Pannecoucke, X.; Poisson, T. Angew. Chem. Int. Ed. 2016, 55, 14141.
      (b) Feng, Z.; Min, Q.-Q.; Xiao, Y.-L.; Zhang, B.; Zhang, X.Angew. Chem. Int. Ed. 2014, 53, 1669.

    35. [35]

      (a) Cao, Z.-Y.; Wang, X.; Tan, C.; Zhao, X.-L.; Zhou, J.; Ding, K. J. Am. Chem. Soc. 2013, 135, 8197.
      (b) Cao, Z.-Y.; Zhao, Y.-L.; Zhou, J. Chem. Commun. 2016, 52, 2537.
      (c) Zhao, Y.-L.; Cao, Z.-Y.; Zeng, X.-P.; Shi, J.-M.; Yu, Y.-H.; Zhou, J. Chem. Commun. 2016, 52, 3943.

    36. [36]

      For a review, see:
      (a) Decostanzi, M.; Campagne, J.-M.; Leclerc, E. Org. Biomol. Chem. 2015, 13, 7351. For examples, see:
      (b) Amii, H.; Kobayashi, T.; Hatamoto, Y.; Uneyama, K. Chem. Commun. 1999, 1323.
      (c) Chu, L.; Zhang, X.; Qing, F.-L. Org. Lett. 2009, 11, 2197.
      (d) Yuan, Z.; Wei, Y.; Shi, M. Chin. J. Chem. 2010, 28, 1709.
      (e) Kashikura, W.; Mori, K.; Akiyama, T. Org. Lett. 2011, 13, 1860. For our continuous efforts in the functionalization of fluorinated enol silyl ethers, see:
      (f) Liu, Y.-L.; Zhou, J. Chem. Commun. 2012, 48, 1919.
      (g) Liu, Y.-L.; Zeng, X.-P.; Zhou, J. Acta Chim. Sinica. 2012, 70, 1451.
      (h) Liu, Y.-L.; Liao, F.-M.; Niu, Y.-F.; Zhao, X.-L.; Zhou, J. Org. Chem. Front. 2014, 1, 742.
      (i) Yu, J.-S.; Liu, Y.-L.; Tang, J.; Wang, X.; Zhou, J. Angew. Chem. Int. Ed. 2014, 53, 9512.
      (j) Liao, F.-M.; Liu, Y.-L.; Yu, J.-S.; Zhou, F.; Zhou, J. Org. Biomol. Chem. 2015, 13, 8906.
      (k) Yu, J.-S.; Zhou, J. Org. Biomol. Chem. 2015, 13, 10968.
      (l) Yu, J.-S.; Liao, F.-M.; Gao, W.-M.; Liao, K.; Zuo, R.-L.; Zhou, J. Angew. Chem. Int. Ed. 2015, 54, 7381.
      (m) Yu, J.-S.; Zhou, J. Org. Chem. Front. 2016, 3, 298.
      (n) Zeng, X.-P.; Zhou, J. J. Am. Chem. Soc. 2016, 138, 8730.

    37. [37]

      Liao, F.-M.; Cao, Z.-Y.; Yu, J.-S.; Zhou, J. Angew. Chem. Int. Ed. 2017, 56, 2459.  doi: 10.1002/anie.201611625

    38. [38]

      (a) Okoromoba, O. E.; Han, J.; Hammond, G. B.; Xu, B. J. Am. Chem. Soc. 2014, 136, 14381.
      (b) Nahra, F.; Patrick, S. R.; Bello, D.; Brill, M.; Obled, A.; Cordes, D. B.; Slawin, A. M. Z.; O'Hagan, D.; Nolan, S. P. ChemCatChem 2015, 7, 240.
      (c) Li, Y.; Liu, X.; Ma, D.; Liu, B.; Jiang, H. Adv. Synth. Catal. 2012, 354, 2683.

    39. [39]

      (a) Lee, S. H.; Schwartz, J. J. Am. Chem. Soc. 1986, 108, 2445.
      (b) Tius, M. A.; Kawakami, J. K. Tetrahedron 1995, 51, 3997.
      (c) Sommer, H.; Fürstner A. Chem. Eur. J. 2017, 23, 558.
      (d) Petasis, N. A.; Yudin, A. K.; Zavialov, I. A.; Prakash, G. K. S.; Olah, G. A. Synlett 1997, 606.
      (e) Furuya, T.; Ritter, T. Org. Lett. 2009, 11, 2860.
      (f) Tredwell, M.; Gourverneur, V. Org. Biomol. Chem. 2006, 4, 26.
      (g) Yang, M.-H.; Matikonda, S. S.; Altman, R. A. Org. Lett. 2013, 15, 3894.
      (h) Ye, Y.; Takada, T.; Buchwald, S. L. Angew. Chem. Int. Ed. 2016, 55, 15559.

    40. [40]

      (a) Qiu, S.; Xu, T.; Zhou, J.; Guo, Y.; Liu, G. J. Am. Chem. Soc. 2010, 132, 2856;
      (b) Shao, Q.; Huang, Y. Chem. Commun. 2015, 51, 6584.

  • 加载中
    1. [1]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    2. [2]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    3. [3]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    4. [4]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    5. [5]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    6. [6]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    7. [7]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    8. [8]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    9. [9]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    10. [10]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    11. [11]

      Siwen Yuan Qilin Wu TianpengYin . NMR Spectroscopy Teaching Design Using the Mosher Method for Stereochemistry of Organic Compounds Based on BOPPPS Teaching Model. University Chemistry, 2025, 40(7): 161-168. doi: 10.12461/PKU.DXHX202502073

    12. [12]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    13. [13]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    14. [14]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    15. [15]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    16. [16]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    17. [17]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    18. [18]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    19. [19]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    20. [20]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

Metrics
  • PDF Downloads(42)
  • Abstract views(4234)
  • HTML views(1421)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return