Citation: Duanmu Dandan, Leong Pak-kin, Jiang Qibai, Yan Hong. Pd(Ⅱ)-Catalyzed Synthesis of Benzyl Benzoates via Benzyl C(sp3)-H Activation[J]. Chinese Journal of Organic Chemistry, ;2017, 37(10): 2669-2677. doi: 10.6023/cjoc201704040 shu

Pd(Ⅱ)-Catalyzed Synthesis of Benzyl Benzoates via Benzyl C(sp3)-H Activation

  • Corresponding author: Jiang Qibai, jiangqibai@163.com Yan Hong, hyan1965@nju.edu.cn
  • Received Date: 24 April 2017
    Revised Date: 22 June 2017
    Available Online: 4 October 2017

    Fund Project: the National Basic Research Program of China 2013CB922101the National Natural Science Foundation of China 21271102the National Natural Science Foundation of China 21472086Project supported by the National Basic Research Program of China (No. 2013CB922101) and the National Natural Science Foundation of China (Nos. 21271102, 21472086)

Figures(4)

  • An efficient Pd(Ⅱ)-catalyzed synthesis of benzyl benzoates via direct functionalization of benzyl C(sp3)-H bonds was developed. The method features a broad substrate scope. This method features high tolerance of functional groups, mild reaction condition, and high chemoselective when there are multiple active C(sp3)-H bonds. A plausible oxidative coupling mechanism was proposed on the basis of mechanistic studies.
  • 加载中
    1. [1]

      Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.  doi: 10.1021/cr900184e

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

      Li, H.; Li, B.-J.; Shi, Z.-J. Catal. Sci. Technol. 2011, 1, 191.  doi: 10.1039/c0cy00076k

    7. [7]

      (a) Chen, H.; Cai, C.; Liu, X.; Li, X.; Jiang, H. Chem. Commun. 2011, 47, 12224.
      (b) Liu, W. B.; Zheng, C.; Zhuo, C. X.; Dai, L. X.; You, S. L. J. Am. Chem. Soc. 2012, 134, 4812.
      (c) Li, Q.; Yu, Z. X. Organometallics 2012, 31, 5185.

    8. [8]

      Rakshit, S.; Patureau, F. W.; Glorius, F. J. Am. Chem. Soc. 2010, 132, 9585.  doi: 10.1021/ja104305s

    9. [9]

      (a) Kharasch, M. S.; Fono, A. J. Org. Chem. 1958, 23, 324.
      (b) Kharasch, M. S.; Sosnovsky, G.; Yang, N. C. J. Am. Chem. Soc. 1959, 81, 5819.
      (c) Andrus, M. B.; Lashley, J. C. Tetrahedron 2002, 58, 845.
      (d) Eames, J.; Watkinson, M. Angew. Chem., Int. Ed. 2001, 40, 3567.
      (e) Malkov, A. V.; Bella, M.; Langer, V.; Kocovsky, P. Org. Lett. 2000, 2, 3047.
      (f) Andrus, M. B.; Zhou, Z. J. Am. Chem. Soc. 2002, 124, 8806.
      (g) Rispens, M. T.; Zondercu, C.; Feringa, B. L. Tetrahedron:Asymmetry 1995, 6, 661.

    10. [10]

      (a) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300.
      (b) Takahara, S.; Kitamura, A.; Sakuragi, H.; Tokumaru, K. Chem. Lett. 1983, 8, 1315.

    11. [11]

      (a) Li, Z.; Cao, L.; Li, C. J. Angew. Chem., Int. Ed. 2007, 46, 6505.
      (b) Pan, S.; Liu, J.; Li, Y.; Li Z. P. Chin. Sci. Bull. 2012, 57, 2382.
      (c) Xiong, T.; Li, Y.; Bi, X.; Lv, Y.; Zhang, Q. Angew. Chem., Int. Ed. 2011, 50, 7140.

    12. [12]

      Chen, C.; Xu, X.; Yang, B.; Qing, F. Org. Lett. 2014, 16, 3372.  doi: 10.1021/ol501400u

    13. [13]

      (a) Weaver, J. D.; Recio, A.; Grenning, A. J.; Tunge, J. A. Chem. Rev. 2011, 111, 1846.
      (b) Kuwano, R. Synthesis 2009, 1049.

    14. [14]

      (a) Evangelisti, C.; Schiavi, E.; Aronica, L. A.; Caporusso, A. M.; Vitulli, G.; Bertinietti, L.; Martra, G.; Balerna, A.; Mobilo, S. J. Catal. 2012, 286, 224.
      (b) Zhang, M. J.; Vedantham, P.; Flynn, D. L.; Hanson, P. R. J. Org. Chem. 2004, 69, 8340.

    15. [15]

      (a) Jovanovic, J.; Hengeveld, W.; Rebrov, E. V.; Nijhuis, T. A.; Hessel, V.; Schouten, J. C. Chem. Eng. Technol. 2011, 34, 1691.
      (b) Gathirwa, J. W.; Maki, T. Tetrahedron 2012, 68, 370.
      (c) Gok, Y. Alici, B.; Cetinkaya, E.; Ozdemir, I.; Ozeroglu, O.; Turk. J. Chem. 2010, 34, 187.

    16. [16]

      Werner, T.; Barrett, A. G. M. J. Org. Chem. 2006, 71, 4302.  doi: 10.1021/jo060562m

    17. [17]

      (a) Hao, W. Y.; Sha, J. C.; Sheng, S. R.; Cai, M. Z. Catal. Commun. 2008, 10, 257.
      (b) Salvadori, J.; Balducci, E.; Zara, S. Petricci, E.; Taddei, M. J. Org. Chem. 2010, 75, 1841.
      (c) Ramesh, C.; Nakamura, R.; Kubota, Y.; Miwa, M.; Sugi, Y. Synthesis 2003, 4, 501.

    18. [18]

      Su, X.-B.; Zhang, Q.-H.; Wu, Y.-Q.; Xu, J.-X. Chin. J. Org. Chem. 2002, 22, 496(in Chinese).  doi: 10.3321/j.issn:0253-2786.2002.07.006
       

    19. [19]

      Wu, T.; Mu, X.; Liu, G. Angew. Chem., Int. Ed. 2011, 50, 12578.  doi: 10.1002/anie.201104575

    20. [20]

      Wei, W.; Zhang, C.; Xu, Y.; Wan, X. Chem. Commun. 2011, 47, 10827.  doi: 10.1039/c1cc14602e

    21. [21]

      Liu, H.; Shi, G.; Pan, S.; Jiang, Y.; Zhang, Y. Org. Lett. 2013, 15, 4098.  doi: 10.1021/ol401687f

    22. [22]

      Sather, A. C.; Berryman, O. B.; Ajami, D.; Rebek, Jr. J. Tet-rahedron Lett. 2011, 52, 2100.  doi: 10.1016/j.tetlet.2010.11.030

    23. [23]

      Khan, K. M.; Maharvi, G. M.; Hayat, S.; Zia, U.; Choudhary, M. I.; Rahman, A. Tetrahedron 2003, 59, 5549.  doi: 10.1016/S0040-4020(03)00812-3

    24. [24]

      Shen, H.; Lu, X.; Jiang, K.; Yang, K.; Lu, Y.; Zheng, Z.; Lai, G.; Xu, L. Tetrahedron 2012, 68, 8916.  doi: 10.1016/j.tet.2012.08.024

    25. [25]

      Green, R. A.; Pletcher, D.; Leach, S. G.; Brown, R. C. D. Org. Lett. 2015, 17, 3290.  doi: 10.1021/acs.orglett.5b01459

    26. [26]

      Blaser, H.; Diggelmann, M.; Meier, H.; Naud, F.; Scheppach, E.; Schnyde, A.; Studer, M. J. Org. Chem. 2003, 68, 3725.  doi: 10.1021/jo034112v

    27. [27]

      Majji, G.; Guin, S.; Gogoi, A.; Rout, S. K.; Patel, B. K. Chem. Commun. 2013, 49, 3031.  doi: 10.1039/c3cc40832a

    28. [28]

      Curran, S. P.; Connon, S. J. Angew. Chem., Int. Ed. 2012, 51, 10866.  doi: 10.1002/anie.v51.43

    29. [29]

      Zhang, S.; Luo, F.; Wang, W.; Jia, X.; Hu, M.; Cheng, J. Tetrahedron Lett. 2010, 51, 3317.  doi: 10.1016/j.tetlet.2010.04.075

    30. [30]

      Tatamidani, H.; Yokota, K.; Kakiuchi, F.; Chatani, N. J. Org. Chem. 2004, 69, 5615.  doi: 10.1021/jo0492719

  • 加载中
    1. [1]

      Haofan Niu Yuhan Wu Xinran Li Longmei Li Dong Wang Yongce Zhang Fengyu Liu Wei Bai . 自驱动固体酸催化乙酸苄酯的合成. University Chemistry, 2026, 41(1): 1-8. doi: 10.12461/PKU.DXHX202505049

    2. [2]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    3. [3]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    4. [4]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    5. [5]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    6. [6]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    7. [7]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    8. [8]

      Jiayi Yang Jianxiu Hao Huacong Zhou Quansheng Liu . “Gorgeous Transformation” of Carbon Dioxide into Cyclic Carbonates: Catalyst Types and Roles. University Chemistry, 2026, 41(2): 178-189. doi: 10.12461/PKU.DXHX202502105

    9. [9]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    10. [10]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    11. [11]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    12. [12]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    13. [13]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    14. [14]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    15. [15]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    16. [16]

      Fan FanHao XiuYuting WangYongpeng CuiYajun Wang . Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production. Acta Physico-Chimica Sinica, 2026, 42(2): 100143-0. doi: 10.1016/j.actphy.2025.100143

    17. [17]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    18. [18]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    19. [19]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    20. [20]

      Yufan Pan Xue Ding Jiayu Lin Haiting Wu Hairong Huang Cuixue Chen Meiling Ye . Oil Cosmetics, Charming Chemistry: A Gradient Science Popularization Scheme for Cream Cosmetic Preparation. University Chemistry, 2025, 40(4): 382-389. doi: 10.12461/PKU.DXHX202406078

Metrics
  • PDF Downloads(7)
  • Abstract views(2255)
  • HTML views(251)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return