Citation: Chen Diao, Xu Ming-Hua. Transition Metal-Catalyzed Asymmetric Addition of Organoboron Reagents to Imines[J]. Chinese Journal of Organic Chemistry, ;2017, 37(7): 1589-1612. doi: 10.6023/cjoc201704017 shu

Transition Metal-Catalyzed Asymmetric Addition of Organoboron Reagents to Imines

  • Corresponding author: Xu Ming-Hua, xumh@simm.ac.cn
  • Received Date: 12 April 2017
    Revised Date: 2 May 2017
    Available Online: 10 July 2017

    Fund Project: the National Natural Science Foundation of China 21472205the National Natural Science Foundation of China 21325209the Program of Shanghai Academic Research Leaders 14XD1404400Project supported by the National Natural Science Foundation of China (Nos. 21325209, 21472205) and the Program of Shanghai Academic Research Leaders (No. 14XD1404400)

Figures(12)

  • Chiral amines are important building blocks in organic synthesis, they also present in numerous natural products, biologically active compounds and pharmaceutical agents. In recent years, the use of various organoboron reagents in transition metal-catalyzed reactions has attracted considerable attentions because of their ready avilibility, low toxicity, good air and moisture stability as well as high functional group compatibility. This review summarizes the remarkable progress and advances in transition metal-catalyzed asymmetric addition of organoboron reagents to imines over the past few years, providing an overview of the recent achievements in stereoselective synthesis of α-chiral amines by using chiral auxiliary or chiral catalysis strategies. At the present time, rhodium-based asymmetric catalysis has proven to be the most efficient and reliable approach to furnish highly optically active α-chiral amines. Varieties of chiral ligands including monophosphines, biphosphines, amidomonophosphanes, phosphoramidites, phosphites, dienes, sulfur-olefins, phosphorus-olefins have showed the great potential in many asymmetric additions of organoboron reagents to imines, enabling the access of both secondary and tertiary α-chiral amines with good to excellent enantioselectivities. On the other hand, important progress has been made in developing effective palladium catalysts mainly based on chiral pyridine-oxazoline and phosphine-oxazoline ligands. However, future studies in this area towards the objective of developing more efficient, practical and general methods remain challenging.
  • 加载中
    1. [1]

      (a) Calderon, S. N.; Rothman, R. B.; Porreca, F.; Flippen-Anderson, J. L.; McNutt, R. W.; Xu, H.; Smith, L. E.; Bilsky, E. J.; Davis, P.; Rice, K. C. J. Med. Chem. 1994, 37, 2125.
      (b) Van Bambeke, F.; Van Laethem, Y.; Courvalin, P.; Tulkens, P. M. Drugs 2004, 64, 913.
      (c) Calderon, S. N.; Rice, K. C.; Rothman, R. B.; Porreca, F.; Anderson, J. L. F.; Kayakiri, H.; Xu, H.; Becketts, K.; Smith, L. E.; Bilsky, E. J.; Davis, P.; Horvath, R. J. Med. Chem. 1997, 40, 695.
      (d) Wiseman, L. R.; Benfield, P. Drugs 1993, 2, 295.

    2. [2]

      (a) Deng, Q. H.; Xu, H. W.; Yuen, A. W.; Xu, Z. J.; Che, C. M. Org. Lett. 2008, 10, 1529.
      (b) Lee, E. C.; Fu, G. C. J. Am. Chem. Soc. 2007, 129, 12066.
      (c) Xu, B.; Zhu, S. F.; Zuo, X. D.; Zhang, Z. C.; Zhou, Q. L. Angew. Chem., Int. Ed. 2014, 53, 3913.
      (d) Xu, B.; Zhu, S. F.; Xie, X. L.; Shen, J. J.; Zhou, Q. L. Angew. Chem., Int. Ed. 2011, 50, 11483.

    3. [3]

      (a) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
      (b) Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069.
      (c) Wang, D. S.; Chen, Q. A.; Lu, S. M.; Zhou, Y. G. Chem. Rev. 2012, 112, 2557.

    4. [4]

      (a) Wang, J.; Liu, X.; Feng, X. Chem. Rev. 2011, 111, 6947.
      (b) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626.
      (c) Marques, C. S.; Burke, A. J. ChemCatChem 2011, 3, 635.
      (d) Robak, M. T.; Herbage, M. A.; Ellman, J. A. Chem. Rev. 2010, 110, 3600.
      (e) Lin, G.-Q.; Xu, M.-H.; Zhong, Y.-W.; Sun, X.-W. Acc. Chem. Res. 2008, 41, 831.
      (f) Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2002, 35, 984.

    5. [5]

    6. [6]

      Weix, D. J.; Shi, Y.; Ellman, J. A. J. Am. Chem. Soc. 2005, 127, 1092.  doi: 10.1021/ja044003d

    7. [7]

      Bolshan, Y.; Batey, R. A. Org. Lett. 2005, 7, 1481.  doi: 10.1021/ol050014f

    8. [8]

      Beenen, M. A.; Weix, D. J.; Ellman, J. A. J. Am. Chem. Soc. 2006, 128, 6304.  doi: 10.1021/ja060529h

    9. [9]

      Brak, K.; Ellman, J. A. J. Am. Chem. Soc. 2009, 131, 3850.  doi: 10.1021/ja9002603

    10. [10]

      Brak, K.; Ellman, J. A. J. Org. Chem. 2010, 75, 3147.  doi: 10.1021/jo100318s

    11. [11]

      Brak, K.; Ellman, J. A. Org. Lett. 2010, 12, 2004.  doi: 10.1021/ol100470g

    12. [12]

      Dai, H.; Lu, X. Org. Lett. 2007, 9, 3077.  doi: 10.1021/ol0711220

    13. [13]

      Kuriyama, M.; Soeta, T.; Hao, X.; Chen, Q.; Tomioka, K. J. Am. Chem. Soc. 2004, 126, 8128.  doi: 10.1021/ja0475398

    14. [14]

      Hao, X.; Kuriyama, M.; Chen, Q.; Yamamoto, Y.; Yamada, K.; Tomioka, K. Org. Lett. 2009, 11, 4470.  doi: 10.1021/ol901866y

    15. [15]

      Hao, X.; Chen, Q.; Yamada, K.-i.; Yamamoto, Y.; Tomioka, K. Tetrahedron 2011, 67, 6469.  doi: 10.1016/j.tet.2011.06.033

    16. [16]

      Hao, X.; Chen, Q.; Kuriyama, M.; Yamada, K.-I.; Yamamoto, Y.; Tomioka, K. Cat. Sci. Tec. 2011, 1, 62.  doi: 10.1039/c0cy00083c

    17. [17]

      Trincado, M.; Ellman, J. A. Angew. Chem., Int. Ed. 2008, 47, 5623.  doi: 10.1002/anie.v47:30

    18. [18]

      Jagt, R. B.; Toullec, P. Y.; Geerdink, D.; de Vries, J. G.; Feringa, B. L.; Minnaard, A. J. Angew. Chem., Int. Ed. 2006, 45, 2789.  doi: 10.1002/(ISSN)1521-3773

    19. [19]

      Duan, H.-F.; Jia, Y.-X.; Wang, L.-X.; Zhou, Q.-L. Org. Lett. 2006, 8, 2567.  doi: 10.1021/ol060755w

    20. [20]

      Kurihara, K.; Yamamoto, Y.; Miyaura, N. Adv. Synth. Catal. 2009, 351, 260.  doi: 10.1002/adsc.200800631

    21. [21]

      Lee, A.; Kim, H. J. Org. Chem. 2016, 81, 3520.  doi: 10.1021/acs.joc.6b00033

    22. [22]

      Tokunaga, N.; Otomaru, Y.; Okamoto, K.; Ueyama, K.; Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2004, 126, 13584.  doi: 10.1021/ja044790e

    23. [23]

      Otomaru, Y.; Kina, A.; Shintani, R.; Hayashi, T. Tetrahedron:Asymmetry 2005, 16, 1673.  doi: 10.1016/j.tetasy.2005.02.022

    24. [24]

      Okamoto, K.; Hayashi, T.; Rawal, V. H. Chem. Commun. 2009, 4815.

    25. [25]

      Crampton, R.; Woodward, S.; Fox, M. Adv. Synth. Catal. 2011, 353, 903.  doi: 10.1002/adsc.v353.6

    26. [26]

      Crampton, R. H.; Fox, M.; Woodward, S. Tetrahedron:Asymmetry 2013, 24, 599.  doi: 10.1016/j.tetasy.2013.04.006

    27. [27]

      Fujioka, M.; Morimoto, T.; Tsumagari, T.; Tanimoto, H.; Nishiyama, Y.; Kakiuchi, K. J. Org. Chem. 2012, 77, 2911.  doi: 10.1021/jo300201g

    28. [28]

      Wang, Z.-Q.; Feng, C.-G.; Xu, M.-H.; Lin, G.-Q. J. Am. Chem. Soc. 2007, 129, 5336.  doi: 10.1021/ja0710914

    29. [29]

      Wang, Z.-Q.; Feng, C.-G.; Zhang, S.-S.; Xu, M.-H.; Lin, G.-Q. Angew. Chem., Int. Ed. 2010, 49, 5780.  doi: 10.1002/anie.v49:33

    30. [30]

      Wang, L.; Wang, Z.-Q.; Xu, M.-H.; Lin, G.-Q. Synthesis 2010, 3263.

    31. [31]

      Yang, H.-Y.; Xu, M.-H. Chem. Commun. 2010, 46, 9223.  doi: 10.1039/c0cc04086j

    32. [32]

      Shao, C.; Yu, H.-J.; Wu, N.-Y.; Feng, C.-G.; Lin, G.-Q. Org. Lett. 2010, 12, 3820.  doi: 10.1021/ol101531r

    33. [33]

      Cui, Z.; Yu, H.-J.; Yang, R.-F.; Gao, W.-Y.; Feng, C.-G.; Lin, G.-Q. J. Am. Chem. Soc. 2011, 133, 12394.  doi: 10.1021/ja2046217

    34. [34]

      Cao, Z.; Du, H. Org. Lett. 2010, 12, 2602.  doi: 10.1021/ol1008087

    35. [35]

      Chen, C.-C.; Gopula, B.; Syu, J.-F.; Pan, J.-H.; Kuo, T.-S.; Wu, P.-Y.; Henschke, J. P.; Wu, H.-L. J. Org. Chem. 2014, 79, 8077.  doi: 10.1021/jo5012653

    36. [36]

      Luo, Y.; Carnell, A. J.; Lam, H. W. Angew. Chem., Int. Ed. 2012, 51, 6762.  doi: 10.1002/anie.201202136

    37. [37]

      Luo, Y.; Hepburn, H. B.; Chotsaeng, N.; Lam, H. W. Angew. Chem., Int. Ed. 2012, 51, 8309.  doi: 10.1002/anie.v51.33

    38. [38]

      Cui, Z.; Chen, Y.-J.; Gao, W.-Y.; Feng, C.-G.; Lin, G.-Q. Org. Lett. 2014, 16, 1016.  doi: 10.1021/ol5000154

    39. [39]

      Gopula, B.; Chiang, C. W.; Lee, W. Z.; Kuo, T. S.; Wu, P. Y.; Henschke, J. P.; Wu, H. L. Org. Lett. 2014, 16, 632.  doi: 10.1021/ol4035897

    40. [40]

      Shintani, R.; Narui, R.; Tsutsumi, Y.; Hayashi, S.; Hayashi, T. Chem. Commun. 2011, 47, 6123.  doi: 10.1039/c1cc11823d

    41. [41]

      Wang, H.; Xu, M.-H. Synthesis 2013, 45, 2125.  doi: 10.1055/s-00000084

    42. [42]

      Jiang, T.; Chen, W.-W.; Xu, M.-H. Org. Lett. 2017, 19, 2138.  doi: 10.1021/acs.orglett.7b00776

    43. [43]

      Chen, J.; Lu, X.; Lou, W.; Ye, Y.; Jiang, H.; Zeng, W. J. Org. Chem. 2012, 77, 8541.  doi: 10.1021/jo301423e

    44. [44]

      Jung, H. H.; Buesking, A. W.; Ellman, J. A. Org. Lett. 2011, 13, 3912.  doi: 10.1021/ol201438k

    45. [45]

      Wada, R.; Shibuguchi, T.; Makino, S.; Oisaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 7687.  doi: 10.1021/ja061510h

    46. [46]

      Osborne, C. A.; Endean, T. B. D.; Jarvo, E. R. Org. Lett. 2015, 17, 5340.  doi: 10.1021/acs.orglett.5b02692

    47. [47]

      Kong, J.; McLaughlin, M.; Belyk, K.; Mondschein, R. Org. Lett. 2015, 17, 5520.  doi: 10.1021/acs.orglett.5b02032

    48. [48]

      Shintani, R.; Takeda, M.; Tsuji, T.; Hayashi, T. J. Am. Chem. Soc. 2010, 132, 13168.  doi: 10.1021/ja106114q

    49. [49]

      Shintani, R.; Takeda, M.; Soh, Y. T.; Ito, T.; Hayashi, T. Org. Lett. 2011, 13, 2977.  doi: 10.1021/ol200958q

    50. [50]

      Nishimura, T.; Noishiki, A.; Tsui, G. C.; Hayashi, T. J. Am. Chem. Soc. 2012, 134, 5056.  doi: 10.1021/ja300697c

    51. [51]

      Wang, H.; Jiang, T.; Xu, M.-H. J. Am. Chem. Soc. 2013, 135, 971.  doi: 10.1021/ja3110818

    52. [52]

      Wang, H.; Li, Y.; Xu, M.-H. Org. Lett. 2014, 16, 3962.  doi: 10.1021/ol501770q

    53. [53]

      Jiang, T.; Wang, Z.; Xu, M.-H. Org. Lett. 2015, 17, 528.  doi: 10.1021/ol503537w

    54. [54]

      Zhang, X.; Xu, B.; Xu, M.-H. Org. Chem. Front. 2016, 3, 944.  doi: 10.1039/C6QO00191B

    55. [55]

      Li, Y.; Yu, Y.-N.; Xu, M.-H. ACS Catal. 2016, 6, 661.  doi: 10.1021/acscatal.5b02403

    56. [56]

      Zhang, Y.-F.; Chen, D.; Chen, W.-W.; Xu, M.-H. Org. Lett. 2016, 18, 2726.  doi: 10.1021/acs.orglett.6b01183

    57. [57]

      Nishimura, T.; Noishiki, A.; Ebe, Y.; Hayashi, T. Angew. Chem., Int. Ed. 2013, 52, 1777.  doi: 10.1002/anie.v52.6

    58. [58]

      Nishimura, T.; Ebe, Y.; Fujimoto, H.; Hayashi, T. Chem. Commun. 2013, 49, 5504.  doi: 10.1039/c3cc42071j

    59. [59]

      Chen, Y.-J.; Chen, Y.-H.; Feng, C.-G.; Lin, G.-Q. Org. Lett. 2014, 16, 3400.  doi: 10.1021/ol501464e

    60. [60]

      Takechi, R.; Nishimura, T. Org. Biomol. Chem. 2015, 13, 4918.  doi: 10.1039/C5OB00431D

    61. [61]

      Yang, G.; Zhang, W. Angew. Chem., Int. Ed. 2013, 52, 7540.  doi: 10.1002/anie.201302861

    62. [62]

      Jiang, C.; Lu, Y.; Hayashi, T. Angew. Chem., Int. Ed. 2014, 53, 9936.  doi: 10.1002/anie.201406147

    63. [63]

      Quan, M.; Yang, G.; Xie, F.; Gridnev, I. D.; Zhang, W. Org. Chem. Front. 2015, 2, 398.  doi: 10.1039/C4QO00347K

    64. [64]

      Álvarez-Casao, Y.; Monge, D.; Álvarez, E.; Álvarez, E.; Fernández, Lassaletta, J. M. Org. Lett. 2015, 17, 5104.  doi: 10.1021/acs.orglett.5b02613

    65. [65]

      He, Q.; Wu, L.; Kou, X.; Butt, N.; Yang, G.; Zhang, W. Org. Lett. 2016, 18, 288.  doi: 10.1021/acs.orglett.5b03458

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    4. [4]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    5. [5]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    6. [6]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    7. [7]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    8. [8]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    9. [9]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    10. [10]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    11. [11]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    12. [12]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    15. [15]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    16. [16]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    17. [17]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    18. [18]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    19. [19]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    20. [20]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

Metrics
  • PDF Downloads(41)
  • Abstract views(4255)
  • HTML views(1444)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return