Citation: Zhang Feng, Liu Xianghua, Liu Wei, Deng Guojun. Application of Pd-Monodentate Phosphorus Catalysts in the Asymmetric Hydrosilylation Reactions of Alkenes[J]. Chinese Journal of Organic Chemistry, ;2017, 37(10): 2555-2568. doi: 10.6023/cjoc201704011 shu

Application of Pd-Monodentate Phosphorus Catalysts in the Asymmetric Hydrosilylation Reactions of Alkenes

  • Corresponding author: Zhang Feng, zhang_feng0911@163.com
  • Received Date: 10 April 2017
    Revised Date: 15 May 2017
    Available Online: 7 October 2017

    Fund Project: the National Natural Science Foundation of China 21302051Project supported by the National Natural Science Foundation of China (No. 21302051) and the Natural Science Foundation of Hunan Province (No. 14JJ3091)the Natural Science Foundation of Hunan Province 14JJ3091

Figures(12)

  • Asymmetric hydrosilylation of alkenes, which has been recognized as an important method for the preparations of optically active secondary alcohols, deserves widespread attention over the world. It is reported that such reaction can be catalyzed by Pd-monodentate phosphorus catalysts with excellent reactivity and enantioselectivity. In the past decades, a wide variety of chiral monodentate phosphorus ligands have been developed because of their stable structure, facile synthesis, convenient modification, unique efficiency. Among them, there are three predominant classes of ligands-phosphines based on an axially chiral biaryl scaffold, phosphines based on a planar chiral ferrocene scaffold and chiral phosphoramidites. Herein, the recent advances in asymmetric hydrosilylation of alkyl-substituted alkenes, styrene derivatives, 1, 3-dienes and other carbon-carbon double bond compounds catalyzed by palladium monodentate phosphorus catalysts are summarized. The perspective is also discussed.
  • 加载中
    1. [1]

      (a) Kiss, G. Chem. Rev. 2001, 101, 3435.
      (b) Liebscher, Y. J. Chem. Rev. 2007, 107, 133.
      (c) Negishi, E. I.; Anastasia, L. Chem. Rev. 2003, 103, 1979.
      (d) Ruiz-Castillo, P.; Buchwald, S. L. Chem. Rev. 2016, 116, 12564.

    2. [2]

    3. [3]

      (a) Zimmer, R.; Dinesh, C. U.; Nandanan, E.; Khan, F. A. Chem. Rev. 2000, 100, 3067.
      (b) Tietze, L. F.; Ila, H.; Bell, H. P. Chem. Rev. 2004, 104, 3453.

    4. [4]

      McDonald, R. I.; Liu, G. S.; Stahl, S. S. Chem. Rev. 2011, 111, 2981.  doi: 10.1021/cr100371y

    5. [5]

      (a) Brunner, H.; Becker, R.; Riepl, G. Organometallics 1984, 3, 1354.
      (b) Nishiyama, H.; Yamaguchi, S.; Kondo, M.; Itoh, K. J. Org. Chem. 1992, 57, 4306.

    6. [6]

      Kiso, Y.; Yamamoto, K.; Tamao, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 4373.  doi: 10.1021/ja00767a074

    7. [7]

    8. [8]

    9. [9]

      (a) Gibson, S. E.; Rudd, M. Adv. Synth. Catal. 2007, 349, 781.
      (b) Han, J. W.; Hayashi, T. Tetrahedron: Asymmetry 2010, 21, 2193.
      (c) Han, J. W.; Hayashi, T. Tetrahedron: Asymmetry 2014, 25, 479.

    10. [10]

      Liu, Z.; He, X. Proc. Chem. 2006, 18, 1489(in Chinese).  doi: 10.3321/j.issn:1005-281X.2006.11.011

    11. [11]

      Hayashi, T.; Tamao, K.; Katsuro, Y.; Nakae, I.; Kumada, M. Tetrahedron Lett. 1980, 21, 1871.  doi: 10.1016/S0040-4039(00)92802-8

    12. [12]

      Uozumi, Y.; Kitayama, K.; Hayashi, T. Tetrahedron:Asymmetry 1993, 4, 2419.  doi: 10.1016/S0957-4166(00)82214-4

    13. [13]

      Hayashi, T.; Kabeta, K. Tetrahedron Lett. 1985, 26, 3023.  doi: 10.1016/S0040-4039(00)98608-8

    14. [14]

      Hayashi, T.; Matsumoto, Y.; Morikawa, I.; Ito, Y. Tetrahedron:Asymmetry 1990, 1, 151.  doi: 10.1016/S0957-4166(00)82367-8

    15. [15]

      Pioda, G.; Togni, A. Tetrahedron:Asymmetry 1998, 9, 3903.  doi: 10.1016/S0957-4166(98)00409-1

    16. [16]

      Weber, I.; Jones, G. B. Tetrahedron Lett. 2001, 42, 6983.  doi: 10.1016/S0040-4039(01)01471-X

    17. [17]

      Gibson, S. E.; Rendell, J. T.; Rudd, M. Synthesis 2006, 3631.

    18. [18]

      (a) Pedersen, H. L.; Johannsen, M. Chem. Commun. 1999, 2517.
      (b) Pedersen, H. L.; Johannsen, M. J. Org. Chem. 2002, 67, 7982.

    19. [19]

      Ohmura, H.; Matsuhash, H.; Tanaka, M.; Kuroboshi, M.; Hiyama, T.; Hatanaka, Y.; Goda, K. J. Organomet. Chem. 1995, 499, 167.  doi: 10.1016/0022-328X(95)00311-D

    20. [20]

      Han, J. W.; Tokunaga, N.; Hayashi, T. Helv. Chim. Acta 2002, 85, 3848.  doi: 10.1002/1522-2675(200211)85:11<3848::AID-HLCA3848>3.0.CO;2-V

    21. [21]

      Han, J. W.; Tokunaga, N.; Hayashi, T. J. Am. Chem. Soc. 2001, 123, 12915.  doi: 10.1021/ja017138h

    22. [22]

      Ogasawara, M.; Ito, A.; Yoshida, K.; Hayashi, T. Organometallics 2006, 25, 2715.  doi: 10.1021/om060138b

    23. [23]

    24. [24]

      Uozumi, Y.; Hayashi, T. J. Am. Chem. Soc. 1991, 113, 9887.  doi: 10.1021/ja00026a044

    25. [25]

      Uozumi, Y.; Lee, S. Y.; Hayashi, T. Tetrahedron Lett. 1992, 33, 7185.  doi: 10.1016/S0040-4039(00)60868-7

    26. [26]

      Uozumi, Y.; Hayashi, T. Tetrahedron Lett. 1993, 34, 2335.  doi: 10.1016/S0040-4039(00)77607-6

    27. [27]

      Kitayama, K.; Uozumi, Y.; Hayashi, T. J. Chem. Soc., Chem. Commun. 1995, 1533.

    28. [28]

      Hayashi, T.; Hirate, S.; Kitayama, K.; Tsuji, H.; Torii, A.; Uo-zumi, Y. J. Org. Chem. 2001, 66, 1441.  doi: 10.1021/jo001614p

    29. [29]

      Hayashi, T.; Niizuma, S.; Kamikawa, T.; Suzuki, N.; Uozumi, Y. J. Am. Chem. Soc. 1995, 117, 9101.  doi: 10.1021/ja00140a041

    30. [30]

      Bringmann, G.; Wuzik, A.; Breuning, M.; Henschel, P.; Peters, K.; Peters, E. M. Tetrahedron:Asymmetry 1999, 10, 3025.  doi: 10.1016/S0957-4166(99)00299-2

    31. [31]

      Kitayama, K.; Tsuji, H.; Uozumi, Y.; Hayashi, T. Tetrahedron Lett. 1996, 37, 4169.  doi: 10.1016/0040-4039(96)00786-1

    32. [32]

      Hayashi, T.; Han, J. W.; Takeda, A.; Tang, J.; Nohmi, K.; Mukaide, K.; Tsuji, H.; Uozumi, Y. Adv. Synth. Catal. 2001, 343, 279.  doi: 10.1002/(ISSN)1615-4169

    33. [33]

      Han, J. W.; Hayashi, T. Chem. Lett. 2001, 976.

    34. [34]

      Han, J. W.; Hayashi, T. Tetrahedron:Asymmetry 2002, 13, 325.  doi: 10.1016/S0957-4166(02)00094-0

    35. [35]

      Dotta, P.; Kumar, P. G. A.; Pregosin, P. S.; Albinati, A.; Rizzato, S. Organometallics 2004, 23, 2295.  doi: 10.1021/om034381b

    36. [36]

      Tschoerner, M.; Pregosin, P.; Albinati, A. Organometallics 1999, 18, 670.  doi: 10.1021/om980783l

    37. [37]

      Gladiali, S.; Pulacchini, S.; Fabbri, D.; Manassero, M.; Sansoni, M. Tetrahedron:Asymmetry 1998, 9, 391.  doi: 10.1016/S0957-4166(98)00009-3

    38. [38]

      Yasuike, S.; Kawara, S.; Okajima, S.; Seki, H.; Yamaguchi, K.; Kurita, J. Tetrahedron Lett. 2004, 45, 9135.  doi: 10.1016/j.tetlet.2004.10.020

    39. [39]

      Ficks, A.; Martinez-Botella, I.; Stewart, B.; Harrington, R. W.; Clegg, W.; Higham, L. J. Chem. Commun. 2011, 47, 8274.  doi: 10.1039/c1cc12440d

    40. [40]

      Duclos, M. C.; Singjunla, Y.; Petit, C.; Favre-Réguillon, A.; Jeanneau, E.; Popowycz, F.; Métay, E.; Lemaire, M. Tetrahedron Lett. 2012, 53, 5984.  doi: 10.1016/j.tetlet.2012.07.136

    41. [41]

      Fer, M. J.; Cinqualbre, J.; Bortoluzzi, J.; Chesse, M.; Leroux, F. R.; Panossian, A. Eur. J. Org. Chem. 2016, 26, 4545.

    42. [42]

      Kiso, Y.; Yamamoto, K.; Tamao, K.; Kumada, M. J. Organomet. Chem. 1981, 210, 9.  doi: 10.1016/S0022-328X(00)86640-1

    43. [43]

      (a) Marinetti, A. Tetrahedron Lett. 1994, 35, 5861.
      (b) Marinetti, A.; Ricard, L. Organometallics 1994, 13, 3956.

    44. [44]

      (a) Okada, T.; Morimoto, T.; Achiwa, K. Chem. Lett. 1990, 999.
      (b) Sakuraba, S.; Okada, T.; Morimoto, T.; Achiwa, K. Chem. Pharm. Bull. 1995, 43, 927.

    45. [45]

      Yamomoto, T.; Yamada, T.; Nagata, Y.; Suginome, M. J. Am. Chem. Soc. 2010, 132, 7899.  doi: 10.1021/ja102428q

    46. [46]

      Hulst, R.; de Vries, N. K.; Feringa, B. L. Tetrahedron:Asymmetry 1994, 5, 699.  doi: 10.1016/0957-4166(94)80032-4

    47. [47]

      (a) deVries, A. H. M.; Meetsma, A.; Feringa, B. L. Angew. Chem. Int. Ed. 1996, 35, 2375.
      (b) Feringa, B. L. Acc. Chem. Res. 2000, 33, 346.
      (c) López, F.; Minnaard, A. J.; Feringa, B. L. Acc. Chem. Res. 2007, 40, 179.

    48. [48]

      (a) Van den Berg, M.; Minnaard, A. J.; Schudd, E. P.; van Esch, J.; de Vries, A. H. M.; de Vries, J. G. J. Am. Chem. Soc. 2000, 122, 11539.
      (b) Hu, A. G.; Fu, Y.; Xie, J. H.; Zhou, H.; Wang, L. X.; Zhou, Q. L. Angew. Chem., Int. Ed. 2002, 41, 2348.
      (c) Hou, G. H.; Xie, J. H.; Yan, P. C.; Zhou, Q. L. J. Am. Chem. Soc. 2009, 131, 1366.
      (d) Liu, Y.; Ding, K. L. J. Am. Chem. Soc. 2005, 127, 10488.

    49. [49]

      (a) Lipowsky, G.; Miller, N.; Helmchen, G. Angew. Chem., Int. Ed. 2004, 43, 4595.
      (b) Ohmura, T.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 15164.
      (c) Kiener, C. A.; Shu, C.; Incarvito, C.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 14272.

    50. [50]

      Jensen, J. F.; Svendsen, B. Y.; la Cour, T. V.; Pedersen, H. L.; Johannsen, M. J. Am. Chem. Soc. 2002, 124, 4558.  doi: 10.1021/ja025617q

    51. [51]

      Guo, X. X.; Xie, J. H.; Hou, G. H.; Shi, W. J.; Wang, L. X.; Zhou, Q. L. Tetrahedron:Asymmetry 2004, 15, 2231.  doi: 10.1016/j.tetasy.2004.05.038

    52. [52]

      Li, X. S.; Song, J. A.; Xu, D. S.; Kong, L. C. Synthesis 2008, 925.

    53. [53]

      Zhang, F.; Li, Y.; Li, Z. W.; He, Y. M.; Zhu, S. F.; Fan, Q. H.; Zhou, Q. L. Chem. Commun. 2008, 6048.

    54. [54]

      Zhang, F.; Fan, Q. H. Org. Biomol. Chem. 2009, 7, 4470.  doi: 10.1039/b909334f

    55. [55]

      Junge, K.; Wendt, B.; Enthaler, S.; Beller, M. ChemCatChem 2010, 2, 453.  doi: 10.1002/cctc.v2:4

    56. [56]

      Park, H. S.; Namgung, S.; Shin, H. M.; Ahn, H. J.; Han, J. W. Bull. Korean Chem. Soc. 2014, 35, 2243.  doi: 10.5012/bkcs.2014.35.8.2243

    57. [57]

      Park, H. S.; Han, J. W.; Shintani, R.; Hayashi, T. Tetrahedron:Asymmetry 2013, 24, 418.  doi: 10.1016/j.tetasy.2013.02.002

    58. [58]

      Park, H. S.; Shin, H. M.; Namgung, S.; Han, J. W. Bull. Korean Chem. Soc. 2014, 35, 2613.  doi: 10.5012/bkcs.2014.35.9.2613

    59. [59]

      Ficks, A.; Hiney, R. M.; Harrington, R. W.; Gilheany, D. G.; Higham, L. J. Dalton Trans. 2012, 41, 3515.  doi: 10.1039/c2dt12214f

    60. [60]

      Fleming, J. T.; Ficks, A.; Waddell, P. G.; Paul, G.; Harrington, R. W.; Higham, L. J. Dalton Trans. 2016, 45, 1886.  doi: 10.1039/C5DT04475H

    61. [61]

      Tamura, M.; Fujihara, H. J. Am. Chem. Soc. 2003, 125, 15742.  doi: 10.1021/ja0369055

    62. [62]

      (a) Zhong, M. M.; Zhang, X. M.; Zhao, Y. P.; Li, C.; Yang, Q. H. Green Chem. 2015, 17, 1702.
      (b) Shi, L.; Wang, X. W.; Sandoval, C. A.; Li, M. X.; Qi, Q. Y.; Li, Z. T.; Ding, K. L. Angew. Chem., Int. Ed. 2006, 45, 4108.

    63. [63]

    64. [64]

    65. [65]

      Yang, L.; Lu, W.; Zhou, W.; Zhang, F. Green Chem. 2016, 18, 2941  doi: 10.1039/C6GC00362A

  • 加载中
    1. [1]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    2. [2]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    5. [5]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    6. [6]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    7. [7]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    8. [8]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    9. [9]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    10. [10]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    11. [11]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    12. [12]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    13. [13]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    14. [14]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    15. [15]

      Xunzhang Fan Yuanjin Zhao Shufang Luo Aihua He . Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing. University Chemistry, 2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065

    16. [16]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    17. [17]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    18. [18]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    19. [19]

      Jiamin Li Wenyue Zhong Kin Shing Chan . “烯”君入瓮又入学——据元素周期表与酸碱理论谈烯烃教学. University Chemistry, 2025, 40(6): 177-182. doi: 10.12461/PKU.DXHX202408040

    20. [20]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(8)
  • Abstract views(2459)
  • HTML views(449)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return