Citation: Sun Fengli, Liu Xuemin, Chen Xinzhi, Qian Chao, Ge Xin. Progress in the Formation of C-S Bond[J]. Chinese Journal of Organic Chemistry, ;2017, 37(9): 2211-2220. doi: 10.6023/cjoc201703038 shu

Progress in the Formation of C-S Bond

  • Corresponding author: Ge Xin, gexin@jiangnan.edu.cn
  • Received Date: 22 March 2017
    Revised Date: 7 May 2017
    Available Online: 24 September 2017

    Fund Project: the National Natural Science Foundation of China 21476194the National Natural Science Foundation of China 21606104the Project Funded by China Postdoctoral Science Foundation 2016M590536the Fundamental Research Funds for the Central Universities JUSRP115A05Project supported by the National Natural Science Foundation of China (Nos. 21476194, 21606104), the Project Funded by China Postdoctoral Science Foundation (No. 2016M590536) and the Fundamental Research Funds for the Central Universities (No. JUSRP115A05)

Figures(5)

  • The construction of C-S bond is the fundamental of organic synthesis, which plays an important role in the synthesis of natural products, biomolecules and functional materials. Thus, it has been received much attention. Base on the different C-S bonding method, the C-H bond activation, decarboxylation coupling reaction and Ullmann reaction are introduced. The ligands of Ullmann C-S coupling are also summarized.
  • 加载中
    1. [1]

      Liu, J.; Yang, J.; Yang, Q.-H.; Wang, G.; Li, Y. Adv. Funct. Mater. 2010, 15, 1297.

    2. [2]

      Dondoni, A. Angew. Chem. 2010, 120, 9133.

    3. [3]

      Natarajan, A.; Guo, Y.-H.; Harbinski, F.; Fan, Y.-H.; Chen, H.; Luus, L.; Diercks, J.; Aktas, H.; Chorev, M.; Halperin, J. A. J. Med. Chem. 2004, 47, 4979.  doi: 10.1021/jm0496234

    4. [4]

      Cole, D. C.; Lennox, W. J.; Lombardi, S.; Ellingboe, J. W.; Bernotas, R. C.; Tawa, G. J.; Mazandarani, H.; Smith, D. L.; Zhang, G.-M.; Coupet, J.; Schechter, L. E. J. Med. Chem. 2005, 48, 353.  doi: 10.1021/jm049243i

    5. [5]

      Banerjee, M.; Poddar, A.; Mitra, G.; Surolia, A.; Owa, T.; Bhattacharyya, B. J. Med. Chem. 2005, 48, 547.  doi: 10.1021/jm0494974

    6. [6]

      Wang, Y.-F.; Zeng, J.-H.; Cui, X.-R. Chin. J. Org. Chem. 2010, 30, 181(in Chinese).
       

    7. [7]

      Cheng, Y.-J.; Sun, L.-P. Chin. J. Org. Chem. 2013, 33, 877(in Chinese).
       

    8. [8]

      Deng, W.; Liu, L.; Guo, Q.-X. Chin. J. Org. Chem. 2004, 24, 150(in Chinese).  doi: 10.3321/j.issn:0253-2786.2004.02.004

    9. [9]

      Kariya, A.; Yamaguchi, T.; Nobuta, T.; Tada, N.; Miura, T.; Itoh, A. RSC Adv. 2014, 4, 13191.  doi: 10.1039/C3RA47863G

    10. [10]

      Gurbuz, N.; Karaca, E. O.; Ozdemir, I.; Cetinkaya, B. Chem. Ber. 1901, 34, 2174.  doi: 10.1002/(ISSN)1099-0682

    11. [11]

      Zhu, F.; Wang, Z.-X. Org. Lett. 2015, 17, 1601.  doi: 10.1021/acs.orglett.5b00510

    12. [12]

      Li, J.; Huang, H.-N.; Liang, W.-H.; Gao, Q.; Duan, Z. Org. Lett. 2012, 15, 282.

    13. [13]

      Zhu, J.-Y.; Chen, Y.; Lin, F.; Wang, B.-S.; Chen, Z.-W.; Liu, L.-X. Org. Biomol. Chem. 2015, 13, 3711.  doi: 10.1039/C4OB02586E

    14. [14]

      Varun, B. V.; Prabhu, K. R. J. Org. Chem. 2014, 79, 9655.  doi: 10.1021/jo501793q

    15. [15]

      Hostier, T.; Ferey, V.; Ricci, G.; Pardoa, D. G.; Cossy, J. Chem. Commun. 2015, 51, 13898.  doi: 10.1039/C5CC05421D

    16. [16]

      Yu, J.-Q.; Ding, K.-L. Acta Chim. Sinica 2015, 73, 1223(in Chinese).
       

    17. [17]

      Su, Y.; Zhou, X.-J.; He, C.-L.; Zhang, W.; Ling, X.; Xiao, X. J. Org. Chem. 2016, 81, 4981.  doi: 10.1021/acs.joc.6b00475

    18. [18]

      Suzuki, H.; Abe, H. Synth. Commun. 1996, 26, 3413.  doi: 10.1080/00397919608003745

    19. [19]

      Li, H.-L.; Wang, Z.-L.; Deng, W.-P. Chin. J. Org. Chem. 2016, 36, 2419(in Chinese).
       

    20. [20]

      Yang, D.-S.; Yan, K.-L.; Wei, W.; Li, G.-Q.; Lu, S.-L.; Zhao, C.-X.; Tian, L.-J.; Wang, H. J. Org. Chem. 2015, 80, 11073.  doi: 10.1021/acs.joc.5b01637

    21. [21]

      Cao, H.; Liu, X.-H.; Zhao, L.-M.; Cen, J.-H.; Lin, J.-X.; Zhu, Q.-X.; Fu, M.-L. Org. Lett. 2014, 16, 146.  doi: 10.1021/ol4031414

    22. [22]

      Liu, C.-R.; Ding, L.-H. Org. Biomol. Chem. 2015, 13, 2251.  doi: 10.1039/C4OB02575J

    23. [23]

      Azeredo, J. B.; Godoi, M.; Martins, G. M.; Silveira, C. C.; Braga, A. L. J. Org. Chem. 2014, 79, 4125.  doi: 10.1021/jo5000779

    24. [24]

      Ge, W.-L.; Wei, Y.-Y. Green Chem. 2012, 14, 2066.  doi: 10.1039/c2gc35337g

    25. [25]

      Sang, P.; Chen, Z.-K.; Zou, J.-W.; Zhang, Y.-H. Green Chem. 2013, 15, 2096.  doi: 10.1039/c3gc40724a

    26. [26]

      Yang, Y.; Zhang, S.; Tang, L.; Hu, Y.-B.; Zha, Z.-G.; Wang, Z.-Y. Green Chem. 2016, 18, 2609.  doi: 10.1039/C6GC00313C

    27. [27]

      Shen, C.; Zhang, P.-F.; Sun, Q.; Bai, S.-Q.; Andy Hor, T. S.; Liu, X.-G. Chem. Soc. Rev. 2015, 44, 291.  doi: 10.1039/C4CS00239C

    28. [28]

      Ma, Y.-Y.; Yan, Z.-Y.; Bian, C.-L.; Li, K.; Zhang, X.-W.; Wang, M.-F.; Gao, X.-L.; Zhang, H.; Lei, A.-W. Chem. Commun. 2015, 51, 10524.  doi: 10.1039/C5CC02253C

    29. [29]

      Nilsson, M.; Ullenius, C. Acta Chem. Scand 1966, 20, 423.  doi: 10.3891/acta.chem.scand.20-0423

    30. [30]

      Nilsson, M.; Ullenius, C. Acta Chem. Scand 1968, 22, 1998.  doi: 10.3891/acta.chem.scand.22-1998

    31. [31]

      Myers, A. G.; Tanaka, D.; Mannion, M. R. J. Am. Chem. Soc. 2002, 124, 11250.  doi: 10.1021/ja027523m

    32. [32]

      Tanaka, D.; Myers, A. G. Org. Lett. 2004, 6, 433.  doi: 10.1021/ol0363467

    33. [33]

      Gooßen, L. J.; Deng, G.-J.; Levy, L. M. Science 2006, 313, 662.  doi: 10.1126/science.1128684

    34. [34]

      Duan, Z.-Y.; Ranjit, S.; Zhang, P.-F.; Liu, X.-G. Chem. Eur. J. 2009, 15, 3666.  doi: 10.1002/chem.200900133

    35. [35]

      Sadananda, R.; Duan, Z.-Y.; Zhang, P.-F.; Liu, X.-G. Org. Lett. 2010, 12, 4134.  doi: 10.1021/ol101729k

    36. [36]

      Becht, J. M.; Drian, C. L. J. Org. Chem. 2011, 76, 6327.  doi: 10.1021/jo200344w

    37. [37]

      Xia, C.-C.; Wei, Z.-J.; Yang, Y.; Yu, W.-B.; Liao, H.-X.; Shen, C.; Zhang, P.-F. Chem. Asian J. 2016, 11, 360.  doi: 10.1002/asia.v11.3

    38. [38]

      Wang, P.-F.; Wang, X.-Q.; Dai, J.-J.; Feng, Y.-S.; Xu, H.-J. Org. Lett. 2014, 16, 4586.  doi: 10.1021/ol502144c

    39. [39]

      Xu, H.-J.; Lan, Q.-S.; Lin, Y.-C.; Li, Y.-Y.; Feng, Y.-S. Chin. J. Org. Chem. 2010, 30, 9(in Chinese).
       

    40. [40]

      Suzuki, H.; Abe, H. Tetrahedron Lett. 1995, 36, 6239.  doi: 10.1016/0040-4039(95)01095-Y

    41. [41]

      Baskin, J. M.; Wang, Z.-Y. Org. Lett. 2002, 4, 4423.  doi: 10.1021/ol0269190

    42. [42]

      Bates, C. G.; Gujadhur, R. K.; Venkataraman, D. Org. Lett. 2002, 4, 2803.  doi: 10.1021/ol0264105

    43. [43]

      Carril, M.; SanMartin, R.; Domínguez, E.; Tellitu, I. Chem. Eur. J. 2007, 13, 5100.  doi: 10.1002/(ISSN)1521-3765

    44. [44]

      Feng, Y.-S.; Zhao, X.-Y.; Wang, J.-Y.; Zheng, F.-Y.; Xu, H.-J. Chin. J. Chem. 2009, 27, 2423(in Chinese).
       

    45. [45]

      Yang, Y.; Li, W.-M.; Xia, C.-C.; Ying, B.-B.; Shen, C.; Zhang, P.-F. ChemCatChem. 2016, 8, 304  doi: 10.1002/cctc.201500917

    46. [46]

      Ranjit, S.; Lee, R.; Heryadi, D.; Shen, C.; Wu, J.-E.; Zhang, P.-F.; Huang, K.-W.; Liu, X.-G. J. Org. Chem. 2011, 76, 8999.  doi: 10.1021/jo2017444

    47. [47]

      Zhang, H.; Cai, Q.; Ma, D.-W. J. Org. Chem. 2005, 70, 5164.  doi: 10.1021/jo0504464

    48. [48]

      Ouali, A.; Laurent, R.; Caminade, A. M.; Majoral, J. P.; Taillefer, M. J. Am. Chem. Soc. 2006, 128, 15990.  doi: 10.1021/ja066505s

    49. [49]

      Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2002, 4, 3517.  doi: 10.1021/ol0266673

    50. [50]

      Kwong, F. Y.; Klapars, A.; Buchwald, S. L. Org. Lett. 2002, 4, 581.  doi: 10.1021/ol0171867

    51. [51]

      Gueiffier, C. E.; Thery, I.; Gueiffier, A.; Buchwald, S. L. Tetrahedron 2006, 62, 6042.  doi: 10.1016/j.tet.2006.04.007

    52. [52]

      Lv, X.; Bao, W.-L. J. Org. Chem. 2007, 72, 3863.  doi: 10.1021/jo070443m

    53. [53]

      Shafir, A.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 8742.  doi: 10.1021/ja063063b

    54. [54]

      Bates, C. G.; Saejueng, P.; Doherty, M. Q.; Venkataraman, D. Org. Lett. 2004, 6, 5005.  doi: 10.1021/ol0477935

    55. [55]

      Kabir, M. S.; Van Linn, M. L.; Monte, A.; Cook, J. M. Org. Lett. 2008, 10, 3363.  doi: 10.1021/ol801149n

    56. [56]

      Ma, D.-W.; Zhang, Y.-D.; Yao, J.-C.; Wu, S.-H.; Tao, F.-G. J. Am. Chem. Soc. 1998, 120, 12459.  doi: 10.1021/ja981662f

    57. [57]

      Ma, D.-W.; Xia, C.-F.; Jiang, J.-Q.; Zhang, J.-H. Org. Lett. 2001, 3, 2189.  doi: 10.1021/ol016043h

    58. [58]

      Ma, D.-W.; Xia, C.-F. Org. Lett. 2001, 3, 2583.  doi: 10.1021/ol016258r

    59. [59]

      Zhu, W.; Ma, D.-W. J. Org. Chem. 2005, 70, 2696.  doi: 10.1021/jo047758b

    60. [60]

      Deng, W.; Zou, Y.; Wang, Y.-F.; Liu, L.; Guo, Q.-X. Synlett. 2004, 7, 1254.

    61. [61]

      Zhao, Q.; Shen, C.; Zheng, H.; Zhang, J.-C.; Zhang, P.-F. Carbohyd Res. 2010, 345, 437.  doi: 10.1016/j.carres.2009.11.032

    62. [62]

      Davis, A. P. Nature 2010, 464, 169.  doi: 10.1038/464169a

    63. [63]

      Shen, C.; Xia, H.-J.; Zheng, H.; Zhang, P.-F.; Chen, X.-Z. ChemInform 2011, 42, 1936.

    64. [64]

      Shen, C.; Shen, F.-Y.; Xia, H.-J.; Zhang, P. F.; Chen, X.-Z. Tetrahedron:Asymmetry 2011, 22, 708.  doi: 10.1016/j.tetasy.2011.04.007

    65. [65]

      Shen, C.; Shen, F.-Y.; Zhou, G.-B.; Xia, H.-J.; Chen, X.-Z.; Liu, X.-G.; Zhang, P.-F. Catal. Commun. 2012, 26, 6.  doi: 10.1016/j.catcom.2012.05.004

    66. [66]

      Monopoli, A.; Calò, V.; Ciminale, F.; Cotugno, P.; Angelici, C.; Cioffi, N.; Nacci, A. J. Org. Chem. 2010, 75, 3908.  doi: 10.1021/jo1005729

    67. [67]

      Thakur, K. G.; Srinivas, K. S.; Chiranjeevi, K.; Sekar, G. ChemInform 2012, 43, 2326.

    68. [68]

      Thakur, K. G.; Ganapathy, D.; Sekar, G. Chem. Commun. 2011, 42, 5076.

    69. [69]

      Yang, M.; Shen, H.-Y.; Li, Y.-Y.; Shen, C.; Zhang, P.-F. RSC Adv. 2014, 4, 26295.  doi: 10.1039/C4RA03187C

    70. [70]

      Qiao, Z.-J.; Liu, H.; Xiao, X.; Fu, Y.; Wei, J.-P.; Li, Y.-X.; Jiang, X.-F. Org. Lett. 2013, 15, 2594  doi: 10.1021/ol400618k

    71. [71]

      Cheng, Y.-N.; Peng, Q.; Fan, W.-G.; Li, P.-X. J. Org. Chem. 2014, 79, 5812.  doi: 10.1021/jo5002752

    72. [72]

      Yamamoto, T.; Sekine, Y. Can. J. Chem. 1984, 62, 1544.  doi: 10.1139/v84-263

    73. [73]

      Wang, X.-L.; Yang, F.; Xue, Z.-Y. Chin. J. Chem. 2015, 35, 29(in Chinese).
       

    74. [74]

      Sperotto, E.; van Klink, G. P. M.; de Vries, J. G.; van Koten, G. J. Org. Chem. 2008, 73, 5625.  doi: 10.1021/jo800491k

  • 加载中
    1. [1]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    4. [4]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    5. [5]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    6. [6]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    7. [7]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    8. [8]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    9. [9]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    10. [10]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    11. [11]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    12. [12]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    13. [13]

      Yujie WANGLaobang WANGZheng ZHANGQi LIUJianping LANG . Construction of W/Cu/S cluster-based supramolecular compounds via alkynyl/sulfur cycloaddition and their third-order nonlinear optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2069-2077. doi: 10.11862/CJIC.20250129

    14. [14]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    15. [15]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    16. [16]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    17. [17]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    18. [18]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    19. [19]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    20. [20]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

Metrics
  • PDF Downloads(140)
  • Abstract views(6914)
  • HTML views(2151)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return