Citation: Jiang Haiyang, Li Qiang, Qi Qingjie, Yang Chenxi, Zhang Dan. Theoretical Study on the Conjugate Addition of Asymmetric Michael Addition of trans-1-Nitro-2-phenylethylene to 2-Methylpropion-aldehyde Catalyzed by Cinchona Alkaloid Derived Primary Amine[J]. Chinese Journal of Organic Chemistry, ;2018, 38(4): 825-831. doi: 10.6023/cjoc201703037 shu

Theoretical Study on the Conjugate Addition of Asymmetric Michael Addition of trans-1-Nitro-2-phenylethylene to 2-Methylpropion-aldehyde Catalyzed by Cinchona Alkaloid Derived Primary Amine

  • Corresponding author: Jiang Haiyang, jianghaiyang999@163.com
  • Received Date: 22 March 2017
    Revised Date: 14 June 2017
    Available Online: 15 April 2017

    Fund Project: Project supported by the China Postdoctoral Science Foundation Project (No. 2016M591451), the Natural Science Foundation of Liaoning Province (No. 2017054028), the Liaoning Education Department General Project (No. LJYL044), the Sixth Agricultural Technology Problems Foundation of Liaoning Technical University (No. 20160086T) and the Undergraduate Innovation and Entrepreneurship Training Program of Liaoning Province (No. 201610147000044)the Undergraduate Innovation and Entrepreneurship Training Program of Liaoning Province 201610147000044the Natural Science Foundation of Liaoning Province 2017054028the China Postdoctoral Science Foundation Project 2016M591451the Liaoning Education Department General Project LJYL044the Sixth Agricultural Technology Problems Foundation of Liaoning Technical University 20160086T

Figures(5)

  • The theoretical study is presented for the Michael addition reaction between trans-1-nitro-2-phenylethylene and 2-methylpropionaldehyde catalyzed by (9S)-9-amino-6'-methoxy-10, 11-dihydrocinchonan (9-epi-DHQDA) and benzoic acid. All structures, including the reactants, intermediates, transition states and products were optimized. Transition states have been confirmed by the corresponding vibration analysis and intrinsic reaction coordinate (IRC). In addition, nature bond orbital (NBO) and atoms in molecules (AIM) theories have been used to analyze orbital interactions and bond natures. Calculations indicate that the benzoic acid might undergo a proton step to the 9-epi-DHQDA to produce the iminium intermediate. Then the iminium serves as a reactive acceptor to participate in the subsequent nucleophilic addition. Next, a proton transfer process from the tertiary amine to nitronate carbon is found to be rate-determining step, and the enantioselectivity of the catalyzed Michael reaction is also controlled by this step. Finally, one water molecule participates in hydrolysis and C=O bond formation, and results in the formation of product and recovery of catalyst.
  • 加载中
    1. [1]

      Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138.  doi: 10.1002/(ISSN)1521-3773

    2. [2]

      Seayad, J.; List, B. Org. Biomol. Chem. 2005, 3, 719.  doi: 10.1039/b415217b

    3. [3]

      Berkessel, A. ; Gröger, H. Asymmetric Organocatalysis, Wiley-VCH, Weinheim, 2005.

    4. [4]

      Dalko, P. I. Enantioselective Organocatalysis, Wiley-VCH, Weinheim, 2007.

    5. [5]

      Wang, T. L.; Yu, Z. Y.; Hoon, D. L.; Lan, Y.; Lu, Y. X. J. Am. Chem. Soc. 2016, 138, 265.  doi: 10.1021/jacs.5b10524

    6. [6]

      Wang, T. L.; Yu, Z. Y.; Hoon, D. L.; Huang, K. W.; Lan, Y.; Lu, Y. X. Chem. Sci. 2015, 6, 4912.  doi: 10.1039/C5SC01614B

    7. [7]

      Li, J. H.; Du, D. M. Chin. J. Chem. 2015, 33, 418.  doi: 10.1002/cjoc.v33.4

    8. [8]

      Zhou, H. Y.; Li, N. N.; Yang, J. Y.; Li, T. Y.; Li, Z. Chin. J. Org. Chem. 2016, 36, 502(in Chinese).
       

    9. [9]

      Berner, O. M.; Tedeschi, L.; Enders, D. Eur. J. Org. Chem. 2002, 12, 1877.

    10. [10]

      List, B.; Pojarliev, P.; Martin, H. J. Org. Lett. 2001, 3, 2423.  doi: 10.1021/ol015799d

    11. [11]

      Zu, L.; Wang, J.; Li, H.; Wang, W. Org. Lett. 2006, 8, 3077.  doi: 10.1021/ol061053+

    12. [12]

      Mossé, S.; Alexakis, A. Org. Lett. 2006, 8, 3577.  doi: 10.1021/ol0614727

    13. [13]

      Luo, S.; Mi, X.; Zhang, L.; Liu, S.; Xu, H.; Cheng, J. P. Angew. Chem., Int. Ed. 2006, 45, 3093.  doi: 10.1002/(ISSN)1521-3773

    14. [14]

      Luo, S.; Mi, X.; Zhang, L.; Cheng, J. P. Chem. Commun. 2006, 3687.
       

    15. [15]

      Li, Y.; Liu, X. Y.; Zhao, G. Tetrahedron:Asymmetry 2006, 17, 2034.  doi: 10.1016/j.tetasy.2006.07.004

    16. [16]

      Zhu, M. K.; Cun, L. F.; Mi, A. Q.; Jiang, Y. Z.; Gong, L. Z. Tetrahedron:Asymmetry 2006, 17, 491.  doi: 10.1016/j.tetasy.2006.01.034

    17. [17]

      Cao, C. L.; Ye, M. C.; Sun, X. L.; Tang, Y. Org. Lett. 2006, 8, 2901.  doi: 10.1021/ol060481c

    18. [18]

      Palomo, C.; Vera, S.; Mielgo, A.; Gómez-Bengoa, E. Angew. Chem., Int. Ed. 2006, 45, 5984.  doi: 10.1002/(ISSN)1521-3773

    19. [19]

      Pansare, S. V.; Pandya, K. J. Am. Chem. Soc. 2006, 128, 9624.  doi: 10.1021/ja062701n

    20. [20]

      Mossé, S.; Laars, M.; Kriis, K.; Kanger, T.; Alexakis, A. Org. Lett. 2006, 8, 2559.  doi: 10.1021/ol0607490

    21. [21]

      Wang, J.; Li, H.; Lou, B.; Zu, L.; Guo, H.; Wang, W. Chem.-Eur. J. 2006, 12, 4321.  doi: 10.1002/(ISSN)1521-3765

    22. [22]

      Tsogoeva, S. B.; Wei, S. Chem. Commun. 2006, 24, 1451.
       

    23. [23]

      Wang, B.; Xu, T.; Zhu, L.; Lan, Y.; Wang, J. D. Org. Chem. Front. 2017, 4, 1266.  doi: 10.1039/C7QO00124J

    24. [24]

      Huang, H.; Jacobsen, E. N. J. Am. Chem. Soc. 2006, 128, 7170.  doi: 10.1021/ja0620890

    25. [25]

      Yalonde, M. P.; Chen, Y.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 6366.  doi: 10.1002/(ISSN)1521-3773

    26. [26]

      Xu, Y.; Zou, W.; Sundén, H.; Ibrahem, I.; Córdova, A. Adv. Synth. Catal. 2006, 348, 418.  doi: 10.1002/(ISSN)1615-4169

    27. [27]

      Jiang, L.; Chen, Y. C. Catal. Sci. Technol. 2011, 1, 354.  doi: 10.1039/c0cy00096e

    28. [28]

      Hansen, H. M.; Longbottom, D. A.; Ley, S. V. Chem. Commun. 2006, 4838.
       

    29. [29]

      Wascholowski, V.; Hansen, H. M.; Longbottom, D. A.; Ley, S. V.; Synthesis 2008, 1269.
       

    30. [30]

      Xie, J. W.; Chen, W.; Li, R.; Zeng, M.; Du, W.; Yue, L.; Chen, Y. C.; Wu, Y.; Zhu, J.; Deng, J. G. Angew. Chem., Int. Ed. 2007, 46, 389.  doi: 10.1002/(ISSN)1521-3773

    31. [31]

      Li, X. F.; Cun, L. F.; Lian, C. X.; Zhong, L.; Chen, Y. C.; Liao, J.; Zhu, J.; Deng, J. G. Org. Biomol. Chem. 2008, 6, 349.  doi: 10.1039/B713129A

    32. [32]

      Li, X. M.; Wang, B.; Zhang, J. M.; Yan, M. Org. Lett. 2011, 13, 374.  doi: 10.1021/ol102570b

    33. [33]

      Yue, L.; Du, W.; Liu, Y. K.; Chen, Y. C. Tetrahedron Lett. 2008, 49, 3881.  doi: 10.1016/j.tetlet.2008.04.069

    34. [34]

      Lu, X.; Deng, L. Angew. Chem. 2008, 120, 7824.  doi: 10.1002/ange.v120:40

    35. [35]

      McCooey, S. H.; Connon, S. J. Org. Lett. 2007, 9, 599.  doi: 10.1021/ol0628006

    36. [36]

      Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.  doi: 10.1063/1.456010

    37. [37]

      Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.  doi: 10.1021/j100377a021

    38. [38]

      Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.  doi: 10.1021/cr00088a005

    39. [39]

      Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735.  doi: 10.1063/1.449486

    40. [40]

      Frisch, M. J. ; Trucks, G. W. ; Schlegel, H. B. ; Scuseria, G. E. ; Robb, M. A. ; Cheeseman, J. R. ; Kudin, K. N. ; Burant, J. C. ; Millam, J. M. ; Iyengar, S. S. ; Tomasi, J. ; Barone, V. ; Mennucci, B. ; Cossi, M. ; Scalmani, G. ; Rega, N. ; Petersson, G. A. ; Nakatsuji, H. ; Hada, M. ; Ehara, M. ; Toyota, K. ; Fukuda, R. ; Hasegawa, J. ; Ishida, M. ; Nakajima, T. ; Honda, Y. ; Kitao, O. ; Nakai, H. ; Klene, M. ; Li, X. ; Knox, J. E. ; Hratchian, H. P. ; Cross, J. B. ; Adamo, C. ; Jaramillo, J. ; Gomperts, R. ; Stratmann, R. E. ; Yazyev, O. ; Austin, A. J. ; Cammi, R. ; Pomelli, C. ; Zakrzewski, V. G. ; Dapprich, S. ; Daniels, A. D. ; Strain, M. C. ; Farkas, O. ; Malick, D. K. ; Rabuck, A. D. ; Raghavachari, K. ; Foresman, J. B. ; Ortiz, J. V. ; Cui, Q. ; Baboul, A. G. ; Clifford, S. ; Piskorz, P. ; Komaromi, I. ; Martin, R. L. ; Fox, D. J. ; Keith, T. ; Challacombe, M. ; Johnson, B. ; Chen, W. ; Wong, M. W. ; Gonzalez. C. ; Pople, J. A. Gaussian 09, revision A. 1, Gaussian Inc., Wallingford CT, 2009.

    41. [41]

      Jones, G. O.; Li, X.; Hayden, A. E.; Houk, K. N.; Danishefsky, S. J. Org. Lett. 2008, 10, 4093.  doi: 10.1021/ol8016287

    42. [42]

      Peles, D. N.; Thoburn, J. D. J. Org. Chem. 2008, 73, 3135.  doi: 10.1021/jo702668u

    43. [43]

      Rehbein, J.; Hiersemann, M. J. Org. Chem. 2009, 74, 4336.  doi: 10.1021/jo900635k

    44. [44]

      Su, Z. S.; Lee, H. W.; Kim, C. K. Eur. J. Org. Chem. 2013, 2013, 1706.
       

    45. [45]

      Jiang, H. Y.; Feng, W.; Sun, Y. W.; Liu, H. L.; Huang, X. R. Chem. J. Chin. Univ. 2014, 35, 1500(in Chinese).  doi: 10.7503/cjcu20140136

    46. [46]

      Fukui, K. ; Fujimoto, H. Frontier Orbitals and Reaction Paths: Selected Papers of Kenichi Fukui, World Scientific, Singapore, 1997

    47. [47]

      Hoffmann, R. Rev. Mod. Phys. 1988, 60, 601.  doi: 10.1103/RevModPhys.60.601

    48. [48]

      Zhang, L. L.; Zhou, Z. J.; Jiang, H. Y.; Liu, H. L.; Huang, X. R. Tetrahedron:Asymmetry 2013, 24, 1.  doi: 10.1016/j.tetasy.2012.11.014

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    3. [3]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    4. [4]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    5. [5]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    8. [8]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    9. [9]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    10. [10]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    11. [11]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    12. [12]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    13. [13]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    14. [14]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    15. [15]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    16. [16]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    17. [17]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    20. [20]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

Metrics
  • PDF Downloads(9)
  • Abstract views(1744)
  • HTML views(252)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return