Citation: Liu Rui, Zhong Xianghong, Liu Zhenyu, Liang Shengbiao, Zhu Hongping. Selective Ethylene Oligomerization Catalyzed by the Chromium Complex Bearing N-Tetrahydrofurfuryl PNP Ligand[J]. Chinese Journal of Organic Chemistry, ;2017, 37(9): 2315-2321. doi: 10.6023/cjoc201703010 shu

Selective Ethylene Oligomerization Catalyzed by the Chromium Complex Bearing N-Tetrahydrofurfuryl PNP Ligand

  • Corresponding author: Zhong Xianghong, zhongxh.mmsh@sinopec.com Zhu Hongping, hpzhu@xmu.edu.cn
  • Received Date: 3 March 2017
    Revised Date: 5 May 2017
    Available Online: 17 September 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21473142, 21673191) and the Innovative Research Team Program (No.IRT_14R31)National Natural Science Foundation of China 21673191Innovative Research Team Program IRT_14R31National Natural Science Foundation of China 21473142

Figures(5)

  • The N-tetrahydrofurfuryl diphoshinoamine (PNP) ligand (E) was synthesized by means of two-step salt elimination reactions where separation of the two kinds of the aminyl lithium salts for the respective reactions is necessary for obtaining a high yield of E. The ligand reacted with CrCl3(THF)3 and Cr(CO)6 to give P, P-chelation complexes[{Ph2PN(CH2OC4H7)-PPh2}CrCl2(μ-Cl)]2 (1) and[Ph2PN(CH2OC4H7)PPh2]Cr(CO)4 (2), respectively. Complexes E, 1 and 2 were characterized by spectroscopy and elemental analysis, of which complex 2 was further confirmed by X-ray crystallography. Upon activation with methylaluminoxane (MAO) or AlEt3, the catalyst systems including 1, 2, E/CrCl3(THF)3, E/Cr(acac)3 and E/CrCl2(THF)2 were investigated. The best catalytic activity was achieved by 15.9 kg (product)/g (Cr)·h in which a selectivity of 63.6% for 1-C8 was obtained.
  • 加载中
    1. [1]

    2. [2]

      (a) Lappin, G. Butene-1 and Other LLDPE Comonmers, Chem SysSystems, Inc, New York, 1986.
      (b) Sauser, J. Alpha-olefins Applications Handbook, Marcel Dekker, New York, 1989.
      (c) Britovsek, G. J. P.; Bruse, M.; Gibson, V. C.; Kimberley, B. S.; Maddox, P. J.; Mastroianni, S.; McTavish, S. J.; Redshaw, C.; Solan, G. A.; Williams, D. J. J. Am. Chem. Soc. 1999, 121, 8728.
      (d) Small, B. L.; Brookhart, M.; Bennett, A. M. A. J. Am. Chem. Soc. 1998, 120, 4049.
      (e) Brookhart, B. L.; Small, M. J. Am. Chem. Soc. 1998, 120, 7143.

    3. [3]

      Robert, M. M.; Albans, S. US 3300458, 1967[Chem. Abstr. 1967, 66, 66008].

    4. [4]

      Manyik, R. M.; Walker, W. E.; Wilson, T. P. J. Catal. 1977, 47, 197.  doi: 10.1016/0021-9517(77)90167-1

    5. [5]

      Freeman, J. W.; Buster, J. L.; Knudsen, R. D. Phillips Petroleum Company, US 5856257, 1999[Chem. Abstr. 1999, 130, 95984].

    6. [6]

      Carter, A.; Cohen, S. A.; Cooley, N. A.; Murphy, A.; Scutt, J.; Wass, D. F. Chem. Commun. 2002, 858.

    7. [7]

      Bollmann, A.; Blann, K.; Dixon, J. T.; Hess, F. M.; Killian, E.; Maumela, H.; McGuinness, D. S.; Morgan, D. H.; Neveling, A.; Otto, S.; Overett, M.; Slawin, A. M. Z.; Wasserscheid, P.; Kuhlmann, S. J. Am. Chem. Soc. 2004, 126, 14712.  doi: 10.1021/ja045602n

    8. [8]

      (a) Shaikh, Y.; Albahily, K.; Sutcliffe, M.; Fomitcheva, V.; Gambarotta, S, Korobkov, I.; Duchateau, R. Angew. Chem. Int. Ed. 2012, 51, 1366.

    9. [9]

      (a) Jiang, T.; Ning, Y. N.; Zhang, B. J.; Li, J. Z.; Wang, G.; Yi, J. J.; Huang, Q. J. Mol. Catal. A:Chem. 2006, 259, 161.
      (b) Jiang, T.; Zhang, S.; Jiang, X. L.; Yang, C. F.; Niu, B.; Ning, Y. N. J. Mol. Catal. A:Chem. 2008, 279, 90.
      (c) Jiang, T.; Tao, Y. Q.; Gao, X. L.; Mao, G. L.; Chen, H. X.; Chen, C. G..; Ning, Y. N. Chin. Sci. Bull. 2012, 57, 1510.
      (d) Zhang, J.; Wang, X.; Zhang, X.; Wu, W.; Zhang, G.; Xu, S.; Shi, M. ACS Catal. 2013, 3, 2311.

    10. [10]

      Liu, R.; Xiao, S.; Zhong, X.; Cao, Y.; Liang, S.; Liu, Z.; Ye, X.; Shen, A.; Zhu, H. Chin. J. Org. Chem. 2015, 35, 1861(in Chinese).  doi: 10.6023/cjoc201504009

    11. [11]

      Elowe, P. R.; McCann, C.; Pringle, P. G.; Spitzmesser, S. K.; Bercaw, J. E. Organometallics 2006, 25, 5255.  doi: 10.1021/om0601596

    12. [12]

      Maumela, M.; Blann, K.; de Bod, H. T.; Dixon, J.; Gabrielli, W.; Williams, D. B. Synthesis 2007, 3863.

    13. [13]

      Dulai, A.; de Bod, H. T.; Hanton, M. J.; Smith, D. M.; Downing, S.; Mansell, S. M.; Wass, D. F. Organometallics 2009, 28, 4613.  doi: 10.1021/om900285e

    14. [14]

      Rucklidge, A. J.; McGuinness, D. S.; Tooze, R. P.; Slawin, A. M. Z.; Pelletier, J. D. A.; Hanton, M. J.; Webb, P. B. Organometallics 2007, 26, 2782.  doi: 10.1021/om0701975

    15. [15]

      Liu, R.; Zhu, K. T.; Zhong, X. H.; Li, J. C.; Liu, Z. Y.; Chen, S. B.; Zhu, H. P. Dalton Trans. 2016, 45, 17020.  doi: 10.1039/C6DT03216H

    16. [16]

      (a) Blann, K.; Bollmann, A.; Dixon, J. T.; Hess, F. M.; Killian, E.; Maumela, H.; Morgan, D. H.; Neveling, A.; Otto, S.; Overett, M. J. Chem. Commun. 2005, 620.
      (b) Blann, K.; Bollmann, A.; Debod, H.; Dixon, J.; Killian, E.; Nongodlwana, P.; Maumela, M.; Maumela, H.; McConnell, A.; Morgan, D. J. Catal. 2007, 249, 244.
      (c) Overett, M. J.; Blann, K..; Bollmann, A.; Dixon, J. T.; Hess, F.; Killian, E.; Maumela, H.; Morgan, D. H.; Neveling, A.; Otto, S. Chem. Commun. 2005, 622.

    17. [17]

      Dulai, A.; McMullin, C. L.; Tenza, K.; Wass, D. F. Organometallics 2011, 30, 935.  doi: 10.1021/om100912y

    18. [18]

      Herwig, W.; Zeiss, H. J. Org. Chem. 1958, 23, 1404.

    19. [19]

      Carter, E.; Cavell, K. J.; Gabrielli, W. F.; Hanton, M. J.; Hallett, A. J.; McDyre, L.; Platts, J. A.; Smith, D. M.; Murphy, D. M. Organometallics 2013, 32, 1924.  doi: 10.1021/om400029y

    20. [20]

      Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen:Göttingen, Germany, 1997.

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    4. [4]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    5. [5]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    6. [6]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    7. [7]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    8. [8]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    9. [9]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    12. [12]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    13. [13]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    14. [14]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    17. [17]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    18. [18]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

Metrics
  • PDF Downloads(5)
  • Abstract views(2234)
  • HTML views(384)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return