Citation: Yang Jun, Fu Ting, Long Yang, Zhou Xiangge. Progress in Catalytic C-H Activation Reactions in Water[J]. Chinese Journal of Organic Chemistry, ;2017, 37(5): 1111-1116. doi: 10.6023/cjoc201702045 shu

Progress in Catalytic C-H Activation Reactions in Water

  • Corresponding author: Zhou Xiangge, zhouxiangge@scu.edu.cn
  • Received Date: 27 February 2017
    Revised Date: 22 March 2017

    Fund Project: the National Natural Science Foundation of China J1310008the National Natural Science Foundation of China Nos. 21472128

Figures(4)

  • C-H bond functionalization is one of the hot spots in the research field of organic chemistry, and selective C-H activation is a challenging project. Among these reactions, organic solvent is normally used as reaction media. Using cheap, environmentally friendly water as reaction solvent would be in line with the requirements of "green chemistry" and low-carbon sustainable development. This paper reviews the recent progress of aqueous catalyzed C-H functionalization reactions, including hybridized sp-, sp2-, and sp3-C-H bonds.
  • 加载中
    1. [1]

      Liao, G.; Shi, B. Acta Chim. Sinica 2015, 73, 1283 (in Chinese).

    2. [2]

      Zhang, B.; Guan, H.; Liu, B.; Shi, B. Chin. J. Org. Chem. 2014, 34, 1487 (in Chinese).

    3. [3]

      Hull, K.; Sanford, M. J. Am. Chem. Soc. 2007, 129, 11904.

    4. [4]

      Desai, L.; Stowers, K.; Sanford, M. J. Am. Chem. Soc. 2008, 130, 13285.

    5. [5]

      Joo, J.; Guo, P.; Sames, D. J. Org. Chem. 2013, 78, 738.

    6. [6]

      Tan, J.; Chen, Y.; Li, H.; Yasuda, N. J. Org. Chem. 2014, 79, 8871.

    7. [7]

      Batchu, H.; Bhattacharyya, S.; Kant, R.; Batra, S. J. Org. Chem. 2015, 80, 7360.

    8. [8]

      Brahim, M.; Smari, I.; Ammar, H.; Hassine, B.; Soulé, J.; Doucet, H. Org. Chem. Front. 2015, 2, 917.

    9. [9]

      Testa, C.; Roger, J.; Scheib, S.; Fleurat-Lessard, P.; Hierso, J. Adv. Synth. Catal. 2015, 357, 2913.

    10. [10]

      Umeda, N.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2009, 74, 7094.

    11. [11]

      Kim, M.; Kwak, J.; Chang, S. Angew. Chem., Int. Ed. 2009, 48, 8935.

    12. [12]

      Gong, T.; Xiao, B.; Cheng, W.; Su, W.; Xu, J.; Liu, Z.; Liu, L.; Fu, Y. J. Am. Chem. Soc. 2013, 135, 10630.

    13. [13]

      Reddy, V.; Qiu, R.; Iwasaki, T.; Kambe, N. Org. Lett. 2013, 15, 1290.

    14. [14]

      Wang, H.; Schrçder, N.; Glorius, F. Angew. Chem., Int. Ed. 2013, 52, 5386.

    15. [15]

      Xie, F.; Qi, Z.; Yu, S.; Li, X. J. Am. Chem. Soc. 2014, 136, 4780.

    16. [16]

      Zhang, P.; Hong, L.; Li, G.; Wang, R. Adv. Synth. Catal. 2015, 357, 345.

    17. [17]

      Asaumi, T.; Matsuo, T.; Fukuyama, T.; Ie, Y.; Kakiuchi, F.; Chatani, N. J. Org. Chem. 2004, 69, 4433.

    18. [18]

      Ackermann, L.; Althammer, A.; Born, R. Angew. Chem., Int. Ed. 2006, 45, 2619.

    19. [19]

      Oi, S.; Sasamoto, H.; Funayama, R.; Inoue, Y. Chem. Lett. 2008, 37, 994.

    20. [20]

      Kumar, P.; Jeyachandran, R.; Ackermann, L. J. Org. Chem. 2013, 78, 4145.

    21. [21]

      Ackermann, L.; Vicente, R.; Potukuchi, H.; Pirovano, V. Org. Lett. 2010, 12, 5032.

    22. [22]

      Arockiam, P.; Fischmeister, C.; Bruneau, C.; Dixneuf, P. Green Chem. 2011, 13, 3075.

    23. [23]

      Muralirajan, K.; Parthasarathy, K.; Cheng, C. Org. Lett. 2012, 14, 4262.

    24. [24]

      Hashimoto, Y.; Hirano, K.; Satoh, T.; Kakiuchi, F.; Miura, M. J. Org. Chem. 2013, 78, 638.

    25. [25]

      Schinkel, M.; Marek, I.; Ackermann, L. Angew. Chem., Int. Ed. 2013, 52, 3977.

    26. [26]

      Gonell, S.; Peris, E. ACS Catal. 2014, 4, 2811.

    27. [27]

      Wei, C.; Li, C. J. Am. Chem. Soc. 2002, 124, 5638.

    28. [28]

      Wei, C.; Li, C. J. Am. Chem. Soc. 2003, 125, 9584.

    29. [29]

      Yao, X.; Li, C. Org. Lett. 2005, 7, 4395.

    30. [30]

      Yao, X.; Li, C. Org. Lett. 2006, 8, 1953.

    31. [31]

      Arockiam, P.; Fischmeister, C.; Bruneau, C.; Dixneuf, P. Angew. Chem., Int. Ed. 2010, 49, 6629.

    32. [32]

      Ackermann, L.; Lygin, A. Org. Lett. 2012, 14, 764.

    33. [33]

      Ackermann, L.; Pospech, J.; Potukuchi, H. Org. Lett. 2012, 14, 2146.

    34. [34]

      Wu, Z. Luo, F.; Chen, S.; Li, Z.; Xiang, H.; Zhou, X. Chem. Commun. 2013, 49, 7653.

    35. [35]

      Wu, Z.; Chen, S.; Hu, C.; Li, Z.; Xiang, H.; Zhou, X. ChemCatChem 2013, 5, 2839.

    36. [36]

      Lu, M.; Lu, P.; Xu, Y.; Loh, T. Org. Lett. 2014, 16, 2614.

    37. [37]

      Luo, F.; Yang, J.; Li, Z.; Xiang, H.; Zhou, X. Eur. J. Org. Chem. 2015, 2463.

    38. [38]

      Sun, S.; Shang, M.; Wang, H.; Lin, H.; Dai, H.; Yu, J. J. Org. Chem. 2015, 80, 8843.

    39. [39]

      Gong, H.; Zeng, H.; Zhou, F.; Li, C. Angew. Chem., Int. Ed. 2015, 54, 5718.

    40. [40]

      Xiao, F.; Chen, S.; Huang, H. Deng, G. Eur. J. Org. Chem. 2015, 7919.

    41. [41]

      Ohnmacht, S.; Mamone, P.; Culshaw, A. Greaney, M. Chem. Commun. 2008, 1241.

    42. [42]

      Ohnmacht, S.; Culshaw, A.; Greaney, M. Org. Lett. 2010, 12, 224.

    43. [43]

      Ramirez, N.; Bosque, I.; Gonzalez-Gomez, J. Org. Lett. 2015, 17, 4550.

    44. [44]

      Du, B.; Qian, P.; Wang, Y.; Mei, H.; Han, J.; Pan, Y. Org. Lett. 2016, 18, 4144.

    45. [45]

      Xiao, F.; Chen, S.; Tian, J.; Huang, H.; Liu, Y.; Deng, G. Green Chem. 2016, 18, 1538.

    46. [46]

      Arumugam, V.; Kaminsky, W.; Nallasamy, D. Green Chem. 2016, 18, 3295.

    47. [47]

      Hu, J.; Lan, T.; Sun, Y.; Chen, H.; Yao, J.; Rao, Y. Chem. Commun. 2015, 51, 14929.

    48. [48]

      Luo, F.; Long, Y.; Li, Z.; Zhou, X. Acta Chim. Sinica 2016, 74, 805 (in Chinese).

    49. [49]

      Dohi, T.; Takenaga, N.; Goto, A.; Fujioka, H.; Kita, Y. J. Org. Chem. 2008, 73, 7365.

    50. [50]

      Yi, C.; Kwon, K.; Lee, D. Org. Lett. 2009, 11, 1567.

    51. [51]

      Pierce, C.; Hilinski, M. Org. Lett. 2014, 16, 6504.

  • 加载中
    1. [1]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    2. [2]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    3. [3]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 100024-0. doi: 10.3866/PKU.WHXB202404012

    4. [4]

      Yongxin LIUXingchen LIHongjia LIUDanni LITao ZHANGXi CHEN . Enhancement effect of Fe3O4 conversion to MIL-100(Fe) on activation of persulfate for degradation of antibiotic. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2503-2513. doi: 10.11862/CJIC.20250169

    5. [5]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    6. [6]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    7. [7]

      Qingtao CHENXiangdong SHIXianghai RAOLiying JIANGChunxiao JIAFenghua CHEN . Catalytic and in situ surface-enhanced Raman scattering detection properties of graphene oxide/gold nanorod assembly. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 120-128. doi: 10.11862/CJIC.20250091

    8. [8]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    9. [9]

      Xiaomin Kang Chuanbao Jiao . Application of Metal-Organic Frameworks in CO2 Catalytic Conversion: Promoting “Double Carbon” Actions for a Beautiful China. University Chemistry, 2026, 41(2): 208-217. doi: 10.12461/PKU.DXHX202503011

    10. [10]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    11. [11]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    12. [12]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    13. [13]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    14. [14]

      Yifan Liu Haonan Peng . AI-Assisted New Era in Chemistry: A Review of the Application and Development of Artificial Intelligence in Chemistry. University Chemistry, 2025, 40(7): 189-199. doi: 10.12461/PKU.DXHX202405182

    15. [15]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    16. [16]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    17. [17]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    18. [18]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    19. [19]

      Yunchao Li Shanying Chen Ke Qi Kangning Huo Shuxin Li Jingyi Li Ying Wei Louzhen Fan . A New Colloid Electrophoresis Experiment Incorporating Characteristics of Inquiry Learning and Ideological and Political Education. University Chemistry, 2024, 39(2): 47-51. doi: 10.3866/PKU.DXHX202308063

    20. [20]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

Metrics
  • PDF Downloads(27)
  • Abstract views(2471)
  • HTML views(380)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return