Citation: Zhang Wei, Hu Chenxu, Zhou Xiangge. Synthesis of N, N-Dimethyl Benzamide and Benzonitriles through Copper-Catalyzed One-Pot Reaction[J]. Chinese Journal of Organic Chemistry, ;2017, 37(5): 1246-1251. doi: 10.6023/cjoc201612040 shu

Synthesis of N, N-Dimethyl Benzamide and Benzonitriles through Copper-Catalyzed One-Pot Reaction

  • Corresponding author: Hu Chenxu, zhouxiangge@scu.edu.cn
  • Received Date: 12 December 2016
    Revised Date: 20 January 2017

    Fund Project: Project supported by the National Natural Science Foundation of China J1310008Project supported by the National Natural Science Foundation of China 21472128

Figures(1)

  • Amide is one of the most important functional groups in nature. Besides the classical synthetic method by using activated acid with amine, several other transition metal-catalyzed protocols have been developed. Aryl nitriles have also attracted substantial attentions as herbicides, natural products, etc. Traditional methods towards aryl nitriles include Sandmeyer and Rosenmund von Braun reaction. In addition of these methods, researchers have explored various kinds of toxic "CN" sources. In continuation of our previous work on copper catalyzed C-CN bond cleavage and C-N formation reactions, herein our recent work of combination of copper-catalyzed amidation of benzyl cyanide and cyanation of aryl iodides by using N, N-dimethyl formamide (DMF) as amide source is reported. A representative procedure for this reaction is as following: benzyl cyanide (1 mmol), iodobenzene (1 mmol), DMF (2 mL), TsOH (1 mmol), Cu2O (0.2 mmol), 1, 10-phenanthroline (0.4 mmol) were added into a 10 mL of Schlenk tube. The mixture was stirred at 130 ℃ under O2 atmosphere for 12 h. The reaction mixture was then cooled down to room temperature, quenched with water, and extracted with ethyl acetate. The organic layer was then dried over anhydrous MgSO4, and the solvent was removed in vacuo. The residue was finally purified by column chromatography on silica gel using petroleum ether-ethyl acetate mixture as eluent. A variety of N, N-dimethyl benzamides and benzonitriles were obtained in yields up to 85% and 75%, respectively.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      Schoenberg, A.; Bartoletti, I.; Heck, R. F. J. Org. Chem. 1974, 39, 3318.  doi: 10.1021/jo00937a003

    4. [4]

      For some of selected examples, see: (a) Wu, X. F.; Neumann, H.; Beller, M. Chem.-Asian J. 2010, 5, 2168.(b) Tambade, P. J.; Patil, Y. P.; Bhanage, B. M. Appl. Organomet. Chem. 2009, 23, 235.(c) Brennfuhrer, A.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2009, 48, 4114.(d) Martinelli, J. R.; Watson, D. A.; Freckmann, D. M. M.; Barder, T. E.; Buchwald, S. L. J. Org. Chem. 2008, 73, 7102.(e) Bjerglund, K.; Lindhardt, A. T.; Skrydstrup, T. J. Org. Chem. 2012, 77, 3793.(f) Andersen, T. L.; Frederiksen, M. W.; Domino, K.; Skrydstrup, T. Angew. Chem., Int. Ed. 2016, 55, 10396.(g) Hao, W.; Liu, H.; Yin, L.; Cai, M. J. Org. Chem. 2016, 81, 4244.

    5. [5]

      (a) Ren, W.; Yamane, M. J. Org. Chem. 2009, 74, 8332.(b) Wieckowska, A.; Fransson, R.; Odell, L. R.; Larhed, M. J. Org. Chem. 2011, 76, 978.(c) Dumbris, S. M.; McElwee-White, L. J. Org. Chem. 2009, 74, 8862.

    6. [6]

      (a) Wieckowska, A.; Fransson, R.; Odell, L. R.; Larhed, M. J. Org. Chem. 2011, 76, 978.(b) Ren, W.; Yamane, M. J. Org. Chem., 2010, 75, 8410.(c) Roberts, B.; Liptrot, D.; Alcaraz, L.; Luker, T.; Stocks, M. J. Org. Lett. 2010, 12, 4280.(d) Ren, E.; Yamane, M. J. Org. Chem. 2010, 75, 3017.

    7. [7]

      Corey, E. J.; Hegedus, L. S. J. Am. Chem. Soc. 1969, 91, 1233.  doi: 10.1021/ja01033a044

    8. [8]

      (a) Cunico, R. F.; Pandey, R. K. J. Org. Chem. 2005, 70, 9048.(b) Cunico, R. F.; Maity, B. C. Org. Lett. 2003, 5, 4947.(c) Cunico, R. F.; Maity, B. C. Org. Lett. 2002, 4, 4357.

    9. [9]

      Lindsay, C. M.; Widdowson, D. A. J. Chem. Soc., Perkin Trans. 1 1988, 569.

    10. [10]

      Wan, Y.; Alterman, M.; Larhed, M.; Hallberg, A. J. Comb. Chem. 2003, 5, 82.  doi: 10.1021/cc0200843

    11. [11]

      (a) Jo, Y.; Ju, J.; Choe, J.; Song, K. H.; Lee, S. J. Org. Chem. 2009, 74, 6358.(b) Ju, J.; Jeong, M.; Moon, J.; Jung, H. M.; Lee, S. Org. Lett. 2007, 9, 4615.(c) Hosoi, K.; Nozaki, K.; Hiyama, T. Org. Lett. 2002, 4, 2849.(d) Chen, J.; Feng, J-B.; Natte, K.; Wu, X. Chem. Eur. J. 2015, 21, 16370.(e) Wu, X.; Zhao, Y.; Ge, H. J. Am. Chem. Soc. 2015, 137, 4924.

    12. [12]

    13. [13]

      (a) Sandmeyer, T. Ber. Dtsch. Chem. Ges. 1884, 17, 2650.(b) Rosenmund, K. W.; Struck, E. Ber. Dtsch. Chem. Ges. 1919, 52, 1749.

    14. [14]

      (a) Zanon, J.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 2890.(b) Yang, C.; Williams, J. M. Org. Lett. 2004, 6, 2837.(c) Buono, F. G.; Chidambaram, R.; Mueller, R. H.; Waltermire, R. E. Org. Lett. 2008, 10, 5325.(d) Jia, X.; Yang, D.; Zhang, S.; Cheng, J. Org. Lett. 2009, 11, 4716.(e) Mondal, B.; Acharyya, K.; Howlader, P.; Sarathi Mukherjee, P. J. Am. Chem. Soc. 2016, 138, 1709.(f) Yang, C.; Hu, S.; Wang, X. Org. Biomol. Chem. 2015, 13, 2541.

    15. [15]

      Chen, X.; Hao, X. S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790.  doi: 10.1021/ja061715q

    16. [16]

      Ding, S. T.; Jiao, N. J. Am. Chem. Soc. 2011, 133, 12374.  doi: 10.1021/ja204063z

    17. [17]

      Luo, F.; Chu, C.; Cheng, C. Organometallics 1998, 17, 1025  doi: 10.1021/om970842f

    18. [18]

      (a) Sundermeier, M.; Zapf, A.; Beller, M. Angew. Chem., Int. Ed. 2003, 42, 1661.(b) Schareina, T.; Zapf, A.; Cotte, A.; Gotta, M.; Beller, M. Adv. Synth. Catal. 2011, 353, 777.(c) Jiang, Z.; Huang, Q.; Chen, S.; Long, L.; Zhou, X. Adv. Synth. Catal. 2012, 354, 589.(d) Zheng, S.; Yu, C.; Shen, Z. Org. Lett. 2012, 14, 3644.(e) Wen, Q.; Jin, J.; Mei, Y.; Lu, P.; Wang, Y. Eur. J. Org. Chem. 2013, 4032.(f) Kim, J.; Kim, H. J.; Chang, S. Angew. Chem., Int. Ed. 2012, 51, 11948.(g) Malapit, C. A.; Reeves, J. T.; Senanayake, C. H. Angew. Chem., Int. Ed. 2016, 55, 326.(h) Ping, Y.; Ding, Q.; Peng, Y. ACS Catal. 2016, 6, 5989.(i) Mishra, A.; Vats, T. K.; Deb, I. J. Org. Chem. 2016, 81, 6525.

    19. [19]

      Hu, C.; Yan, X.; Zhou, X.; Li, Z. Org. Biomol. Chem. 2013, 11, 8179.  doi: 10.1039/c3ob41855c

    20. [20]

      Cristau, H. J.; Ouali, A.; Spindler, J. F.; Taillefer, M. Chem. Eur. J. 2005, 11, 2483.  doi: 10.1002/(ISSN)1521-3765

    21. [21]

      Lamani, M.; Prabhu, K. R. Angew. Chem., Int. Ed. 2010, 49, 6622.  doi: 10.1002/anie.201002635

    22. [22]

      Suzuki, Y.; Moriyama, K.; Togo, H. Tetrahedron 2011, 67, 7956.  doi: 10.1016/j.tet.2011.08.028

    23. [23]

      Enthaler, S. Chem. Eur. J. 2011, 17, 9316.  doi: 10.1002/chem.v17.34

    24. [24]

      Bai, C. H.; Yao, X. F.; Li Y. W. ACS Catal. 2015, 5, 884.  doi: 10.1021/cs501822r

    25. [25]

      Motoyama, Y.; Mitsui, K.; Ishida, T.; Nagashima, H. J. Am. Chem. Soc. 2005, 127, 13150.

    26. [26]

      Hu, L.; Liu, X.; Liao, X. B. Angew. Chem., Int. Ed. 2016, 55, 9743.  doi: 10.1002/anie.201604406

    27. [27]

      Priyadarshini, S.; Joseph, P. J. A.; Kantam, M. L. RSC Adv. 2013, 3, 18283.

    28. [28]

      Chen, W. F.; Li, K. B.; Hu, Z. Q.; Wang, L. L.; Lai, G. Q.; Li, Z. F. Organometallics 2011, 30, 2026.  doi: 10.1021/om200080f

    29. [29]

      Sawant, D. N.; Wagh, Y. S.; Bhatte, K. D.; Bhanage, B. M. J. Org. Chem. 2011, 76, 5489.  doi: 10.1021/jo200754v

    30. [30]

      Liu, Z. J.; Zhang, J.; Chen, S. L.; Shi, E.; Xu, Y.; Wan, X. B. Angew. Chem., Int. Ed. 2012, 51, 3231.  doi: 10.1002/anie.v51.13

  • 加载中
    1. [1]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    2. [2]

      Yinuo Wang Ziyu Liu Hongxia Tan Jun Tong Dazhen Xu . Synthesis of Bromobenzoxazine: Introduce a Comprehensive Organic Chemistry Experiment Transformed from Undergraduate Research Innovation. University Chemistry, 2025, 40(10): 208-216. doi: 10.12461/PKU.DXHX202411077

    3. [3]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    4. [4]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    5. [5]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    6. [6]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    7. [7]

      Qingtao CHENXiangdong SHIXianghai RAOLiying JIANGChunxiao JIAFenghua CHEN . Catalytic and in situ surface-enhanced Raman scattering detection properties of graphene oxide/gold nanorod assembly. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 120-128. doi: 10.11862/CJIC.20250091

    8. [8]

      Yongxin LIUXingchen LIHongjia LIUDanni LITao ZHANGXi CHEN . Enhancement effect of Fe3O4 conversion to MIL-100(Fe) on activation of persulfate for degradation of antibiotic. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2503-2513. doi: 10.11862/CJIC.20250169

    9. [9]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    10. [10]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    11. [11]

      Zhenhuan WangWeifei WeiRuijie MaDou LuoZhanxiang ChenJun ZhangLiyang YuGang LiZhenghui Luo . 苯并[a]苯嗪受体的核心氰基化实现高效(19.04%)绿色溶剂加工的二元有机太阳能电池. Acta Physico-Chimica Sinica, 2026, 42(2): 100182-0. doi: 10.1016/j.actphy.2025.100182

    12. [12]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    13. [13]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    14. [14]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    16. [16]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    17. [17]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    18. [18]

      Yuai Duan Xuanyu Gan Yao Fu Yingjie Cao Hongliang Han Zhanfang Ma . Application and Innovative Design of Digital Technology in the Preparation Experiment of Cis(Trans)-Diglycine Copper Complexes. University Chemistry, 2026, 41(1): 373-381. doi: 10.12461/PKU.DXHX202504048

    19. [19]

      Tianrong Zhu Fan Yu Yuhang Liu Haiyi Xu Tingting Ma Ming Li Yuhang Xue Yazhen Wang Aihua Li Biao Xiao Xiaolun Peng . Intelligent Visualization, Precise Iodometry: Color Recognition-based Indirect Iodometric Method for Copper Determination. University Chemistry, 2026, 41(1): 264-275. doi: 10.12461/PKU.DXHX202503096

    20. [20]

      Xian-Wei LvXinyuan DingJiaxing GongXuhuan YanDayong HuangJianxin GengZhong-Yong Yuan . Research progress on orbital hybridization in photocatalysis and electrocatalysis. Acta Physico-Chimica Sinica, 2026, 42(2): 100151-0. doi: 10.1016/j.actphy.2025.100151

Metrics
  • PDF Downloads(4)
  • Abstract views(2398)
  • HTML views(148)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return