Citation: Zhao Ning. Progress in Ring Opening Polymerization of Lactides Catalyzed by Chiral Organometallic Complexes[J]. Chinese Journal of Organic Chemistry, ;2017, 37(5): 1139-1159. doi: 10.6023/cjoc201612011 shu

Progress in Ring Opening Polymerization of Lactides Catalyzed by Chiral Organometallic Complexes

  • Corresponding author: Zhao Ning, zhaoninghg@sust.edu.cn
  • Received Date: 4 December 2016
    Revised Date: 17 January 2017

Figures(8)

  • Polylactides have received considerable attention in recent years due to their outstanding properties such as biocompatibility, biodegradability, and renewability. In particular, the studies on ring opening polymerization (ROP) of lactides in stereoselective manner catalyzed by chiral organometallic complexes have been regarded as one of the most significant fields in the synthesis of polylactides. The important advances in the ROP of lactides catalyzed by chiral organometallic complexes are reviewed in this article.
  • 加载中
    1. [1]

      (a) Chiellini, E.; Solaro, R. Adv. Mater. 1996, 8, 305.
      (b) Uhrich, K. E.; Cannizzaro, S. M.; Langer, R. S.; Shakesheff, K. M. Chem. Rev. 1999, 99, 3181.
      (c) Drumright, R. E.; Gruber, P. R.; Henton, D. E. Adv. Mater. 2000, 12, 1841.
      (d) Coates, G. W. J. Chem. Soc., Dalton Trans. 2002, 467.
      (e) Ghosh, S. J. Chem. Res. 2004, 241. (f) Auras, R.; Harte, B.; Selke, S. Macromol. Biosci. 2004, 4, 835.
      (g) Tsuji, H. Macromol. Biosci. 2005, 5, 569.
      (h) Gunatillake, P.; Mayadunne, R.; Adhikari, R. Biotechnol. Ann. Rev. 2006, 12, 301.
      (i) Wu, J.; Yu, T.-L.; Chen, C.-T.; Lin, C.-C. Coord. Chem. Rev. 2006, 250, 602.
      (j) Amgoune, A.; Thomas, C. M.; Carpentier, J.-F. Pure Appl. Chem. 2007, 79, 2013.
      (k) Dove, A. P. Chem. Commun. 2008, 6446.
      (l) Wheaton, C. A.; Hayes, P. G.; Ireland, B. J. Dalton Trans. 2009, 4832.
      (m) Stanford, M. J.; Dove, A. P. Chem. Soc. Rev. 2010, 39, 486.

    2. [2]

    3. [3]

      Ovitt, T. M.; Coates, G. W. J. Am. Chem. Soc. 2002, 124, 1316.  doi: 10.1021/ja012052+

    4. [4]

    5. [5]

      Chisholm, M. H.; Eilerts, N. W.; Huffman, J. C.; Iyer, S. S.; Pacold, M.; Phomphrai, K. J. Am. Chem. Soc. 2000, 122, 11845.  doi: 10.1021/ja002160g

    6. [6]

      Labourdette, G.; Lee, D. J.; Patrick, B. O.; Ezhova, M. B.; Mehrkhodavandi, P. Organometallics 2009, 28, 1309.  doi: 10.1021/om800818v

    7. [7]

      Drouin, F.; Oguadinma, P. O.; Whitehorne, T. J. J.; Prud'homme, R. E.; Schaper, F. Organometallics 2010, 29, 2139.  doi: 10.1021/om100154w

    8. [8]

      Börner, J.; Flörke, U.; Döring, A.; Kuckling, D.; Jones, M. D.; Steiner, M.; Breuning, M.; Herres-Pawlis, S. Inorg. Chem. Commun. 2010, 13, 369.  doi: 10.1016/j.inoche.2009.12.024

    9. [9]

      Darensbourg, D. J.; Karroonnirun, O. Inorg. Chem. 2010, 49, 2360.  doi: 10.1021/ic902271x

    10. [10]

      Pastor, M. F.; Whitehorne, T. J. J.; Oguadinma, P. O.; Schaper, F. Inorg. Chem. Commun. 2011, 14, 1737.  doi: 10.1016/j.inoche.2011.07.018

    11. [11]

      Otero, A.; Fernández-Baeza, J.; Sánchez-Barba, L. F.; Tejeda, J.; Honrado, M.; Garcés, A.; Lara-Sánchez, A.; Rodríguez, A. M. Organometallics 2012, 31, 4191.  doi: 10.1021/om300146n

    12. [12]

      (a) Zhang, Z.; Zhao, N.; Ren, W.; Chen, L.; Song, H.; Zi G. Inorg. Chem. Commun. 2012, 20, 234.
      (b) Zhao, N.; Chen, L.; Ren, W.; Song, H.; Zi, G. J. Organomet. Chem. 2012, 712, 29.

    13. [13]

      Honrado, M.; Otero, A.; Fernández-Baeza, J.; Sánchez-Barba, L. F.; Lara-Sánchez, A.; Tejeda, J.; Carrión, M. P.; Martínez-Ferrer, J.; Garcés, A.; Rodríguez, A. M. Organometallics 2013, 32, 3437.  doi: 10.1021/om4003279

    14. [14]

      Wang, H.; Ma, H. Chem. Commun. 2013, 49, 8686.  doi: 10.1039/c3cc44980g

    15. [15]

      Honrado, M.; Otero, A.; Fernández-Baeza, J.; Sánchez-Barba, L. F.; Garcés, A.; Lara-Sańchez, A.; Rodríguez, A. M. Organometallics 2014, 33, 1859.  doi: 10.1021/om500207x

    16. [16]

      Abbina, S.; Du, G. ACS Macro Lett. 2014, 3, 689.  doi: 10.1021/mz5002959

    17. [17]

      Gao, A.; Yao, W.; Xiao, Y.; Zhang, M.; Zhu, G.; Zhang, N.; Wang, S.; Wang, D.; Zhang, Y.; Gao, Y.; Xu, Z.; Lu, P.; Zhang, Z. Polyhedron 2015, 85, 537.  doi: 10.1016/j.poly.2014.08.067

    18. [18]

      Spassky, N.; Wisniewski, M.; Pluta, C.; Borgne, A. L. Macromol. Chem. Phys. 1996, 197, 2627.  doi: 10.1002/macp.1996.021970902

    19. [19]

      Ovitt, T. M.; Coates, G. W. J. Am. Chem. Soc. 1999, 121, 4072.  doi: 10.1021/ja990088k

    20. [20]

      Zhong, Z.; Dijkstra, P. J.; Feijen, J. Angew. Chem., Int. Ed. 2002, 41, 4510.  doi: 10.1002/1521-3773(20021202)41:23<4510::AID-ANIE4510>3.0.CO;2-L

    21. [21]

      Zhong, Z.; Dijkstra, P. J.; Feijen, J. J. Am. Chem. Soc. 2003, 125, 11291.  doi: 10.1021/ja0347585

    22. [22]

      Bouyahyi, M.; Grunova, E.; Marquet, N.; Kirillov, E.; Thomas, C. M.; Roisnel, T.; Carpentier, J.-F. Organometallics 2008, 27, 5815.  doi: 10.1021/om800651z

    23. [23]

      Du, H.; Velders, A. H.; Dijkstra, P. J.; Sun, J.; Zhong, Z.; Chen, X.; Feijen, J. Chem. Eur. J. 2009, 15, 9836.  doi: 10.1002/chem.v15:38

    24. [24]

      Castro-Osma, J. A.; Alonso-Moreno, C.; Már quez-Segovia, I.; Otero, A.; Lara-Sánchez, A.; Fernández-Baeza, J.; Rodríguez, A. M.; Sánchez-Barba, L. F.; García-Martínez, J. C. Dalton Trans. 2013, 42, 9325.  doi: 10.1039/c3dt32657h

    25. [25]

      Gao, B.; Duan, R.; Pang, X.; Li, X.; Qu, Z.; Tang, Z.; Zhuang, X.; Chen, X. Organometallics 2013, 32, 5435.  doi: 10.1021/om400714q

    26. [26]

      (a) Zhao, N.; Wang, Q.; Hou, G.; Song, H.; Zi, G. J. Organomet. Chem. 2014, 754, 51.
      (b) Zhao, N.; Wang, Q.; Hou, G.; Song, H.; Zi, G. Inorg. Chem. Commun. 2014, 41, 6.

    27. [27]

      (a) Zhao, N.; Wang, Q.; Hou, G.; Song, H.; Zi, G. Inorg. Chim. Acta 2014, 413, 128.
      (b) Zhao, N.; Wang, Q.; Hou, G.; Song, H.; Zi, G. Inorg. Chem. Commun. 2014, 44, 86.

    28. [28]

      Pilone, A.; Press K.; Goldberg, I.; Kol, M.; Mazzeo, M.; Lamberti, M. J. Am. Chem. Soc. 2014, 136, 2940.  doi: 10.1021/ja412798x

    29. [29]

      Go, M. J.; Kim, S. H.; Kang, Y. Y.; Park, H.-R.; Kim, Y.; Lee, J. Inorg. Chem. Commun. 2014, 44, 139.  doi: 10.1016/j.inoche.2014.03.008

    30. [30]

      Bian, S.; Abbina, S.; Lu, Z.; Kolodka, E.; Du, G. Organometallics 2014, 33, 2489.  doi: 10.1021/om401226j

    31. [31]

      Gao, B.; Li, D.; Duan, Q.; Duan, R.; Pang, X. New J. Chem. 2015, 39, 4670.  doi: 10.1039/C5NJ00469A

    32. [32]

      Chamberlain, B. M.; Sun, Y.; Hagadorn, J. R.; Hemmesch, E. W.; Young, V. G.; Jr.; Pink, M.; Hillmyer, M. A.; Tolman, W. B. Macromolecules 1999, 32, 2400.  doi: 10.1021/ma990005k

    33. [33]

      Alaaeddine, A.; Amgoune, A.; Thomas, C. M.; Da gorne, S.; Bellemin-Laponnaz, S.; Carpentier, J.-F. Eur. J. Inorg. Chem. 2006, 3652.

    34. [34]

      Heck, R.; Schulz, E.; Collin, J.; Carpentier, J.-F. J. Mol. Catal. A: Chem. 2007, 268, 163.  doi: 10.1016/j.molcata.2006.12.030

    35. [35]

      Platel, R. H.; White, A. J. P.; Williams, C. K. Inorg. Chem. 2008, 47, 6840.  doi: 10.1021/ic800419t

    36. [36]

      Zi, G.; Wang, Q.; Xiang, L.; Song, H. Dalton Trans. 2008, 5930.

    37. [37]

      Wang, Q.; Xiang, L.; Song, H.; Zi, G. J. Organomet. Chem. 2009, 694, 691.  doi: 10.1016/j.jorganchem.2008.11.061

    38. [38]

      Otero, A.; Fernández-Baeza, J.; Lara-Sánchez, A.; Alonso-Moreno, C.; Márquez-Segovia, I.; Sánchez-Barba, L. F.; Rodríguez, A. M. Angew. Chem., Int. Ed. 2009, 48, 2176.  doi: 10.1002/anie.v48:12

    39. [39]

      Zhang, F.; Zhang, J.; Song, H.; Zi, G. Inorg. Chem. Commun. 2011, 14, 72.  doi: 10.1016/j.inoche.2010.09.034

    40. [40]

      Kratsch, J.; Kuzdrowska, M.; Schmid, M.; Kazeminejad, N.; Kaub, C.; Oña-Burgos, P.; Guillaume, S. M.; Roesky, P. W. Organometallics 2013, 32, 1230.  doi: 10.1021/om301011v

    41. [41]

      Ren, W.; Chen, L.; Zhao, N.; Wang, Q.; Hou, G.; Zi, G. J. Organomet. Chem. 2014, 758, 65.  doi: 10.1016/j.jorganchem.2014.02.005

    42. [42]

      Gregson, C. K. A.; Blackmore, I. J.; Gibson, V. C.; Long, N. J.; Marshall, E. L.; White, A. J. P. Dalton Trans. 2006, 3134.

    43. [43]

      Lee, J.; Kim, Y.; Do, Y. Inorg. Chem. 2007, 46, 7701.  doi: 10.1021/ic700493p

    44. [44]

      Chmura, A. J.; Cousins, D. M.; Davidson, M. G.; Jones, M. D.; Lunn, M. D.; Mahonc, M. F. Dalton Trans. 2008, 1437.

    45. [45]

      Zhang, F.; Song, H.; Zi, G. J. Organomet. Chem. 2010, 695, 1993.  doi: 10.1016/j.jorganchem.2010.05.003

    46. [46]

      Saha, T. K.; Ramkumar, V.; Chakraborty, D. Inorg. Chem. 2011, 50, 2720.  doi: 10.1021/ic1025262

    47. [47]

      Deivasagayam, D.; Peruch, F. Polymer 2011, 52, 4686.  doi: 10.1016/j.polymer.2011.07.049

    48. [48]

      Zhao, N.; Hou, G.; Deng, X.; Zi, G.; Walter, M. D. Dalton Trans. 2014, 43, 8261.  doi: 10.1039/C4DT00510D

    49. [49]

      Peng, Y.-L.; Huang, Y.; Chuang, H.-J.; Kuo, C.-Y.; Lin, C.-C. Polymer 2010, 51, 4329.  doi: 10.1016/j.polymer.2010.07.016

    50. [50]

      Davin, J. P.; Buffet, J.-C.; Spaniol, T. P.; Okuda, J. Dalton Trans. 2012, 41, 12612.  doi: 10.1039/c2dt31309j

    51. [51]

      Wang, H.; Yang, Y.; Ma, H. Macromolecules 2014, 47, 7750.  doi: 10.1021/ma501896r

    52. [52]

      Fecker, A. C.; Freytag, M.; Jones, P. G.; Zhao, N.; Zi, G.; Walter, M. D. Dalton Trans. 2015, 44, 16325.  doi: 10.1039/C5DT02851E

    53. [53]

      Rosen, T.; Goldberg, I.; Venditto, V.; Kol, M. J. Am. Chem. Soc. 2016, 138, 12041.  doi: 10.1021/jacs.6b07287

    54. [54]

      Buffet, J.-C.; Okuda, J.; Arnold, P. L. Inorg. Chem. 2010, 49, 419.  doi: 10.1021/ic900740n

    55. [55]

      Yu, I.; Acosta-Ramírez, A.; Mehrkhodavandi, P. J. Am. Chem. Soc. 2012, 134, 12758.  doi: 10.1021/ja3048046

    56. [56]

      Aluthge, D. C.; Patrick, B. O.; Mehrkhodavandi, P. Chem. Commun. 2013, 49, 4295.  doi: 10.1039/C2CC33519K

    57. [57]

      Hayatifar, M.; Marchetti, F.; Pampaloni, G.; Zacchini, S. Inorg. Chem. 2013, 52, 4017.  doi: 10.1021/ic4000654

    58. [58]

      Kang, Y. Y.; Park, H.-R.; Lee, M. H.; An, J.; Kim, Y.; Lee, J. Polyhedron 2015, 95, 24.  doi: 10.1016/j.poly.2015.04.006

  • 加载中
    1. [1]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    2. [2]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    3. [3]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    4. [4]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    5. [5]

      Qingtao CHENXiangdong SHIXianghai RAOLiying JIANGChunxiao JIAFenghua CHEN . Catalytic and in situ surface-enhanced Raman scattering detection properties of graphene oxide/gold nanorod assembly. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 120-128. doi: 10.11862/CJIC.20250091

    6. [6]

      Yongxin LIUXingchen LIHongjia LIUDanni LITao ZHANGXi CHEN . Enhancement effect of Fe3O4 conversion to MIL-100(Fe) on activation of persulfate for degradation of antibiotic. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2503-2513. doi: 10.11862/CJIC.20250169

    7. [7]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    8. [8]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    9. [9]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    10. [10]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    11. [11]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    12. [12]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    13. [13]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    14. [14]

      Qiwen Chen Baolei Wang . Research Progress on One-Electron σ-Bond of Organic Compounds. University Chemistry, 2025, 40(11): 191-198. doi: 10.12461/PKU.DXHX202412136

    15. [15]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    16. [16]

      Xiaodong Chen Yumin Zhang . An Improved Simulated Annealing Algorithm for Predicting the Molecular Formulas of Organic Compounds. University Chemistry, 2025, 40(9): 19-24. doi: 10.12461/PKU.DXHX202408095

    17. [17]

      Qianping Li Hua Guan Changfeng Wan Yonghai Song Jianwen Jiang . 大学有机化学复习课项目式教学——以“液晶化合物4-正戊基苯甲酸-4′-正戊基苯酯的合成路线设计与产品制备”为例. University Chemistry, 2025, 40(8): 100-116. doi: 10.12461/PKU.DXHX202410070

    18. [18]

      Siwen Yuan Qilin Wu TianpengYin . NMR Spectroscopy Teaching Design Using the Mosher Method for Stereochemistry of Organic Compounds Based on BOPPPS Teaching Model. University Chemistry, 2025, 40(7): 161-168. doi: 10.12461/PKU.DXHX202502073

    19. [19]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    20. [20]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

Metrics
  • PDF Downloads(20)
  • Abstract views(3944)
  • HTML views(1431)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return