Citation: Wu Xiaofang, Wu Pei, Li Jingyu, Lu Jing, Wang Jianchun. Synthesis of Novel Ferrocenyl Thiazole and Imidazole Derivatives and Its Selective Recognition to Fe3+[J]. Chinese Journal of Organic Chemistry, ;2017, 37(6): 1412-1416. doi: 10.6023/cjoc201611037 shu

Synthesis of Novel Ferrocenyl Thiazole and Imidazole Derivatives and Its Selective Recognition to Fe3+

  • Corresponding author: Wang Jianchun, cnuwjc@cnu.edu.cn
  • Received Date: 25 November 2016
    Revised Date: 9 February 2017

    Fund Project: the General Plan of Beijing Municipal Education Commission KM201710028007the Beijing Natural Science Foundation 2173060

Figures(5)

  • Five novel ferrocenyl thiazole and imidazole derivatives were synthesized. The structure characterization of the five products showed that ferrocene conjugative unit and thiazole or imidazole conjugative unit were linked by carbonyl methylene skeleton (COCH2). Chloroacetylferrocene (1a) was prepared by chloroacetylation of ferrocene which reacted with different heterocyclic compounds (2-mercaptobenzothiazole, 2-mercaptobenzimidazole, imidazole and benzimidazole) to give four novel compounds, respectively. 1, 1'-Bis(bromoacetyl)ferrocene (1b) was prepared by acetylation and subsequent bromination of ferrocene, which then reacted with 2-mercaptobenzothiazole to produce 2e. All the new compounds were confirmed by 1H NMR, 13C NMR, ESI-MS, HRMS and IR. Three single crystal structures were obtained. Recognition properties on 14 metal ions of the five new compounds were investigated by UV-vis spectrum. The results showed that the five new compounds possessed recognition properties only to iron(Ⅲ), in which 2a had maximum spectra response.
  • 加载中
    1. [1]

      Umesh, F.; Sanjay, A.; Anil, K. Chem. Phys. Lett. 2013, 584, 165.  doi: 10.1016/j.cplett.2013.08.029

    2. [2]

      Choi, Y. W.; Park, G. J.; Na, Y. J.; Jo, H. Y.; Lee, S. A. You, G. R.; Kim, C. Sens. Actuators, B 2014, 194, 343.  doi: 10.1016/j.snb.2013.12.114

    3. [3]

      Xu, D.; Wang, M.-M.; Zeng, R.-J.; He, S.-G.; Zhang, Y.; Wang, H.; Shen, H.-T. Appl. Chem. Ind. 2013, 42, 1712 (in Chinese).

    4. [4]

      Bhatt, K. D.; Makwana, B. A.; Vyas, D. J.; Mishra, D. R.; Jain, V. K. J. Lumin. 2014, 146, 450.  doi: 10.1016/j.jlumin.2013.10.004

    5. [5]

      Zhang, H.; Wu, X.-X.; Wu, F.-Y. Chin. J. Inorg. Chem. 2013, 29, 2394 (in Chinese).

    6. [6]

      Du, B.; Ding, Z.-J.; Guo, L.; Wang, P.-H.; Li, Z.-J.; Yu, J.-H. Spectrosc. Spectral Anal. 2015, 35, 470 (in Chinese).

    7. [7]

      Zhang, S.-L.; Zhao, B.; Ran, L.; Qin, D.-B.; Luo, J.-W. Chem. Reag. 2014, 36, 925 (in Chinese).

    8. [8]

      Su, N.; Yang, M.-P.; Meng, W.-F.; Yang, B.-Q. Chin. J. Org. Chem. 2015, 35, 175 (in Chinese).
       

    9. [9]

      Garcia-Beltran, O.; Cassels, B. K.; Perez, C.; Mena, N.; Nunez, M. T.; Martine, N. P.; Pavez, P.; Aliaga, M. E. Sensors 2014, 14, 1358.  doi: 10.3390/s140101358

    10. [10]

      Maria, A.; Arturo, E.; Alberto, T.; Pedro, M. Org. Lett. 2011, 13, 2078.  doi: 10.1021/ol2004935

    11. [11]

      Zapata, F.; Caballero, A.; Espinosa, A.; Tárraga, A.; Molina, P. J. Org. Chem. 2009, 74, 4787.  doi: 10.1021/jo900533x

    12. [12]

      Caballero, A.; Lloveras, V.; Curiel, D. T.; Tarraga, A.; Espinosa, A.; Garcia, R.; Vidal-Gancedo, J.; Rovira, C.; Wurst, K.; Molina, P. Inorg. Chem. 2007, 46, 825.  doi: 10.1021/ic061803b

    13. [13]

      Zapata, F.; Caballero, A.; Espinosa, A.; Tarraga, A.; Molina, P. Inorg. Chem. 2009, 48, 11566.  doi: 10.1021/ic901234d

    14. [14]

      Romero, T.; Caballero, A.; Tárraga, A.; Molina, P. Org. Lett. 2009, 11, 3466.  doi: 10.1021/ol901308z

    15. [15]

      Zhuo, J.-B.; Yan, X.-Q.; Wang, X.-X.; Xie, L.-L.; Yuan, Y.-F. Chin. J. Org. Chem. 2015, 35, 1090 (in Chinese).
       

    16. [16]

      Zhuo, J.-B., Wan, Q., Yan, X.-Q., Xie, L.-L., Yuan, Y.-F. Chem. J. Chin. Univ. 2015, 36, 477 (in Chinese).

    17. [17]

      Molina, P.; Tarraga, A.; Curiel, D.; Velasco, M. D. J. Organomet. Chem. 2001, 637~639, 258.

    18. [18]

      Ferreira, A. P.; Ferreira da Silva, J. L.; Duarte, M. T.; Minas da Piedade, M. F.; Robalo, M. P.; Harjivan, S. G.; Marzano, C.; Gandin, V.; Marques, M. M. Organometallics 2009, 28, 5412.  doi: 10.1021/om9003835

    19. [19]

      Tárraga, A.; Molina, P.; Curiel, D.; Velasco, M. D. Organometallics 2001, 20, 2145.  doi: 10.1021/om000604b

  • 加载中
    1. [1]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    2. [2]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    3. [3]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    4. [4]

      Dafa Chen Haiping Xia . From Pollutant to Metal-Centred Annulene: The Transformation Journey of a Little Osmium Atom. University Chemistry, 2025, 40(10): 156-160. doi: 10.12461/PKU.DXHX202508094

    5. [5]

      Kexin Feng Jie Zhang Yujia Sun Qiong Ai Longchun Li . 乙酰二茂铁和二茂铁甲酰丙酮的合成、纯化及表征. University Chemistry, 2025, 40(8): 307-314. doi: 10.12461/PKU.DXHX202409045

    6. [6]

      Limin ZhaoKaiqiang XuChuanbiao Bie . 2D COF photocatalyst with highly stabilized tautomeric transition and singlet oxygen generation. Acta Physico-Chimica Sinica, 2026, 42(4): 100216-0. doi: 10.1016/j.actphy.2025.100216

    7. [7]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    8. [8]

      Chengyu JIANGXufeng LIU . Synthesis, structural characterization, electrocatalytic proton reduction, and fungicidal activity of thiazole-containing di-iron complexes. Chinese Journal of Inorganic Chemistry, 2026, 42(2): 355-364. doi: 10.11862/CJIC.20250253

    9. [9]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-0. doi: 10.3866/PKU.WHXB202406014

    10. [10]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    11. [11]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    12. [12]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    13. [13]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    14. [14]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    15. [15]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    16. [16]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    17. [17]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    18. [18]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    19. [19]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    20. [20]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

Metrics
  • PDF Downloads(6)
  • Abstract views(2536)
  • HTML views(838)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return