Citation: Liu Weigang, Guo Lifeng, Fan Yangyang, Huang Zeao, Cong Huan. [4+4] Photodimerization of Anthracene Derivatives: Recent Synthetic Advances and Applications[J]. Chinese Journal of Organic Chemistry, ;2017, 37(3): 543-554. doi: 10.6023/cjoc20161101 shu

[4+4] Photodimerization of Anthracene Derivatives: Recent Synthetic Advances and Applications

  • Corresponding author: Cong Huan, hcong@mail.ipc.ac.cn
  • Received Date: 2 November 2016
    Revised Date: 6 December 2016

    Fund Project: the China Postdoctoral Science Foundation 2016M601140Project supported by the "Thousand Youth Talents Plan", the National Natural Science Foundation of China 21672227the Chinese Academy of Sciences XDB17030200

Figures(10)

  • The[4+4] photodimerizations of anthracene and its derivatives have been extensively studied for over a century. This classic photochemical reaction features broad substrate scope, user-friendly operation, and controllable reversibility. However, the synthetic applications of anthracene photodimerizations have been underdeveloped thus far, largely because of stereoisomer separation and solubility problems of the dianthracene products. Considering that the dianthracene products display unique molecular rigidity and geometry, further studies to improve the synthetic utility of anthracene photodimerizations should be warranted. This review summarizes the representative works of anthracene photodimerizations since the beginning of the 21st century, highlighting the synthetic advances to improve the reaction regio-and enantio-selectivity, as well as the synthetic applications toward functional organic molecules and molecular machines.
  • 加载中
    1. [1]

      Becker, H.-D. Chem. Rev. 1993, 93, 145.  doi: 10.1021/cr00017a008

    2. [2]

      Bouas-Laurent, H.; Castellan, A.; Desvergne, J.-P.; Lapouyade, R. Chem. Soc. Rev. 2000, 29, 43.  doi: 10.1039/a801821i

    3. [3]

      Bouas-Laurent, H.; Castellan, A.; Desvergne, J.-P.; Lapouyade, R. Chem. Soc. Rev. 2001, 30, 248.  doi: 10.1039/b006013p

    4. [4]

      For selected examples on photodimerizations of heteroaromatics:
      (a) Zhang, Y.; Wang, L.; Zhang, M.; Fun, H.-K.; Xu, J.-H. Org. Lett. 2004, 6, 4893;
      (b) Wang, R.; Yuan, L.; Macartney, D. H. J. Org. Chem. 2006, 71, 1237;
      (c) Ihmels, H.; Luo, J. J. Photochem. Photobiol., A 2008, 200, 3.

    5. [5]

      For selected examples on photodimerizations of naphthalene derivatives:
      (a) Tung, C.-H.; Wang, Y.-M. J. Am. Chem. Soc. 1990, 112, 6322.
      (b) Lei, L.; Wu, L.-Z.; Wu, X.-L.; Liao, G.-H.; Luo, L.; Zhang, L.-P.; Tung, C.-H.; Ding, K.-L. Tetrahedron Lett. 2006, 47, 4725.
      (c) Luo, L.; Cheng, S.-F.; Chen, B.; Tung, C.-H.; Wu, L.-Z; Langmuir 2010, 26, 782.
      (d) Xu, H.-X.; Cheng, S.-F.; Yang, X.-J.; Chen, B.; Chen, Y.; Zhang, L.-P.; Wu, L.-Z.; Fang, W.; Tung, C.-H.; Weiss, R. G. J. Org. Chem. 2012, 77, 1685.

    6. [6]

      For selected examples on photodimerizations of tetracene and pentacene:
      (a) Reichwagen, J.; Hopf, H.; Del Guerzo, A.; Desvergne, J.-P.; Bouas-Laurent, H. Org. Lett. 2004, 6, 1899.
      (b) Benard, C. P.; 'Geng, Z.; Heuft, M. A.; VanCrey, K.; Fallis, A. G. J. Org. Chem. 2007, 72, 7229.

    7. [7]

      Takaguchi, Y.; Tajima, T.; Ohta, K.; Motoyoshiya, J.; Aoyama, H. Chem. Lett. 2000, 29, 1388.  doi: 10.1246/cl.2000.1388

    8. [8]

      Cao, D.; Meier, H. Angew. Chem., Int. Ed. 2001, 40, 186.  doi: 10.1002/1521-3773(20010105)40:1<>1.0.CO;2-6

    9. [9]

      Benard, C. P.; Geng, Z.; Heuft, M. A.; VanCrey, K.; Fallis, A. G. J. Org. Chem. 2007, 72, 7229.  doi: 10.1021/jo0709807

    10. [10]

      Liang, C.-K.; Desvergne, J.-P.; Bassani, D. M. Photochem. Photobiol. Sci. 2014, 13, 316.  doi: 10.1039/C3PP50322D

    11. [11]

      Fukuhara, G.; Iida, K.; Kawanami, Y.; Tanaka, H.; Mori, T.; Inoue, Y. J. Am. Chem. Soc. 2015, 137, 15007.  doi: 10.1021/jacs.5b09775

    12. [12]

      Li, P.; Wong, B. M.; Zakharov, L. N.; Jasti, R. Org. Lett. 2016, 18, 1574.  doi: 10.1021/acs.orglett.6b00430

    13. [13]

      Tung, C.-H.; Wu, L.-Z.; Zhang, L.-P.; Chen, B. Acc. Chem. Res. 2003, 36, 39.  doi: 10.1021/ar010141l

    14. [14]

      Schmidt, G. M. J. Pure Appl. Chem. 1971, 27, 647.

    15. [15]

      Ito, Y.; Fujita, H. J. Org. Chem. 1996, 61, 567.

    16. [16]

      Ihmels, H.; Leusser, D.; Pfeiffer, M.; Stalke, D. Tetrahedron 2000, 56, 6867.  doi: 10.1016/S0040-4020(00)00508-1

    17. [17]

      Horiguchi, M.; Ito, Y. J. Org. Chem. 2006, 71, 3608.  doi: 10.1021/jo060315i

    18. [18]

      Yamada, S.; Kawamura, C. Org. Lett. 2012, 14, 1572.  doi: 10.1021/ol3003089

    19. [19]

      Tung, C. H.; Wu, L. Z.; Yuan, Z. Y.; Su, N. J. Am. Chem. Soc. 1998, 120, 11594.  doi: 10.1021/ja9741178

    20. [20]

      Tung, C.-H., Guang, J.-Q. J. Org. Chem. 1998, 63, 5857.  doi: 10.1021/jo980412e

    21. [21]

      Wu, D.-Y.; Zhang, L.-P.; Wu, L.-Z.; Wang, B.-J.; Tung, C.-H. Tetrahedron Lett. 2002, 43, 1281.  doi: 10.1016/S0040-4039(01)02360-7

    22. [22]

      Wu, D.-Y.; Chen, B.; Fu, X.-G.; Wu, L.-Z.; Zhang, L.-P.; Tung, C.-H. Org. Lett. 2003, 5, 1075.  doi: 10.1021/ol0341041

    23. [23]

      Gui, J.-C.; Yan, Z.-Q.; Peng, Y.; Yi, J.-G.; Zhou, D.-Y.; Su, D.; Zhong, Z.-H.; Gao, G.-W.; Wu, W.-H.; Yang, C. Chin. Chem. Lett. 2016, 27, 1017.  doi: 10.1016/j.cclet.2016.04.021

    24. [24]

      Marquis, D.; Desvergne, J.-P.; Bouas-Laurent, H. J. Org. Chem. 1995, 60, 7984.  doi: 10.1021/jo00129a045

    25. [25]

      Hiraga, H.; Morozumi, T.; Nakamura, H. Tetrahedron Lett. 2002, 43, 9093.  doi: 10.1016/S0040-4039(02)02310-9

    26. [26]

      Rau, H. Chem. Rev. 1983, 83, 535.  doi: 10.1021/cr00057a003

    27. [27]

      Inoue, Y. Chem. Rev. 1992, 92, 741.  doi: 10.1021/cr00013a001

    28. [28]

      Yang, C.; Inoue, Y. Chem. Soc. Rev. 2014, 43, 4123.  doi: 10.1039/C3CS60339C

    29. [29]

      Yang, C.; Mori, T.; Origane, Y.; Ko, H. Y.; Selvapalam, N.; Kim, K.; Inoue, Y. J. Am. Chem. Soc. 2008, 130, 8574.  doi: 10.1021/ja8032923

    30. [30]

      Yang, C.; Ke, C.-F.; Liang, W.; Fukuhara, G.; Mori, T.; Liu, Y.; Inoue, Y. J. Am. Chem. Soc. 2011, 133, 13786.  doi: 10.1021/ja202020x

    31. [31]

      Yao, J.; Yan, Z.; Ji, J.; Wu, W.; Yang, C.; Nishijima, M.; Fukuhara, G.; Mori, T.; Inoue, Y. J. Am. Chem. Soc. 2014, 136, 6916.  doi: 10.1021/ja5032908

    32. [32]

      Nishijima, M.; Wada, T.; Mori, T.; Pace, T. C. S.; Bohne, C.; Inoue, Y. J. Am. Chem. Soc. 2007, 129, 3478.  doi: 10.1021/ja068475z

    33. [33]

      Nishijima, M.; Kato, H.; Fukuhara, G.; Yang, C.; Mori, T.; Maruyama, T.; Otagiri, M.; Inoue, Y. Chem. Commun. 2013, 49, 7433.  doi: 10.1039/c3cc42656d

    34. [34]

      Nishijima, M.; Goto, M.; Fujikawa, M.; Yang, C.; Mori, T.; Wada, T.; Inoue, Y. Chem. Commun. 2014, 50, 14082.  doi: 10.1039/C4CC04818K

    35. [35]

      Kawanami, Y.; Katsumata, S.-Y.; Nishijima, M.; Fukuhara, G.; Asano, K.; Suzuki, T.; Yang, T.; Nakamura, A.; Mori, T.; Inoue, Y. J. Am. Chem. Soc. 2016, 138, 12187.  doi: 10.1021/jacs.6b05598

    36. [36]

      Fukuhara, G.; Nakamura, T.; Kawanami, Y.; Yang, C.; Mori, T.; Hiramatsu, H.; Dan-oh, Y.; Tsujimoto, K.; Inoue, Y. Chem. Commun. 2012, 48, 9156.  doi: 10.1039/c2cc34880b

    37. [37]

      Fukuhara, G.; Nakamura, T.; Kawanami, Y.; Yang, C.; Mori, T.; Hiramatsu, H.; Dan-oh, Y.; Nishimoto, T.; Tsujimoto, K.; Inoue, Y. J. Org. Chem. 2013, 78, 10996.  doi: 10.1021/jo401977f

    38. [38]

      Fukuhara, G.; Iida, K.; Kawanami, Y.; Tanaka, H.; Mori, T.; Inoue, Y. J. Am. Chem. Soc. 2015, 137, 15007.  doi: 10.1021/jacs.5b09775

    39. [39]

      Kohmoto, S.; Ono, Y.; Masu, H.; Yamaguchi, C.; Kishikaw, K.; Yamamoto, M. Org. Lett. 2001, 3, 4153.  doi: 10.1021/ol010206k

    40. [40]

      Sakamoto, M.; Unosawa, A.; Kobaru, S.; Saito, A.; Mino, T.; Fujita, T. Angew. Chem., Int. Ed. 2005, 44, 5523.  doi: 10.1002/(ISSN)1521-3773

    41. [41]

      Sakamoto, M.; Unosawa, A.; Kobaru, S.; Hasegawa, Y.; Mino, T.; Kasashima, Y.; Fujita, T.; Chem. Commun. 2007, 1632.

    42. [42]

      Barth, J. V.; Costantini, G.; Kern, K. Nature 2005, 437, 671.  doi: 10.1038/nature04166

    43. [43]

      Kissel, P.; Heijst, J.; Enning, R.; Stemmer, A.; Schlüter, A. D.; Sakamoto, J. Org. Lett. 2010, 12, 2778.  doi: 10.1021/ol100877g

    44. [44]

      Li, M.; Schlüter, A. D.; Sakamoto, J. J. Am. Chem. Soc. 2012, 134, 11721.  doi: 10.1021/ja3038905

    45. [45]

      Kissel, P.; Erni, R.; Schweizer, W. B.; Rossell, M. D.; King, B. T.; Bauer, T.; Götzinger, S.; Schlüter, A. D.; Sakamoto, J. Nat. Chem. 2012, 4, 287.  doi: 10.1038/nchem.1265

    46. [46]

      Murray, D. J.; Patterson, D. D.; Payamyar, P.; Bhola, R.; Song, W.; Lackinger, M.; Schlüter, A. D.; King, B. T. J. Am. Chem. Soc. 2015, 137, 3450.  doi: 10.1021/ja512018j

    47. [47]

      Huang, Z.-A.; Chen, C.; Yang, X.-D.; Fan, X.-B.; Zhou, W.; Tung, C.-H.; Wu, L.-Z.; Cong, H. J. Am. Chem. Soc. 2016, 138, 11144.  doi: 10.1021/jacs.6b07673

    48. [48]

      Schäfer, C.; Mattay, J. Photochem. Photobiol. Sci. 2004, 3, 331.  doi: 10.1039/B400351A

    49. [49]

      Hao, W.; Fang, L.; Helgeson, R. C.; Houk, K. N. Angew. Chem., Int. Ed. 2013, 52, 655.  doi: 10.1002/anie.201205376

    50. [50]

      Molard, Y.; Bassani, D. M.; Desvergne, J.-P.; Horton, P. N.; Hursthouse, M. B.; Tucker, J. H. R. Angew. Chem., Int. Ed. 2005, 44, 1072.  doi: 10.1002/(ISSN)1521-3773

    51. [51]

      Molard, Y.; Bassani, D. M.; Desvergne, J.-P.; Moran, N.; Tucker, J. H. R. J. Org. Chem. 2006, 71, 8523.  doi: 10.1021/jo061528a

    52. [52]

      Chih-Kai, L.; Dubacheva, G. V.; Buffeteau, T.; Cavagnat, D.; Hapiot, P.; Fabre, B.; Tucker, J. H. R.; Bassani, D. M. Chem. Eur. J. 2013, 19, 12748.  doi: 10.1002/chem.201301613

    53. [53]

      Hirose, K.; Shiba, Y.; Ishibashi, K.; Doi, Y.; Tobe, Y. Chem. Eur. J. 2008, 14, 3427.  doi: 10.1002/(ISSN)1521-3765

    54. [54]

      Tron, A.; Thornton, P. J.; Lincheneau, C.; Desvergne, J.-P.; Spencer, N.; Tucker, J. H. R.; McClenaghan, N. D. J. Org. Chem. 2015, 80, 988.  doi: 10.1021/jo502452t

    55. [55]

      Tron, A.; Jacquot de Rouville, H.-P.; Ducrot, A.; Tucker, J. H. R.; Baroncini, M.; Credi, A.; McClenaghan, N. D. Chem. Commun. 2015, 51, 2810.  doi: 10.1039/C4CC09472G

    56. [56]

      Castellano, M.; Ferrando-Soria, J.; Pardo, E.; Julve, M.; Lloret, F.; Mathoniere, C.; Pasan, J.; Ruiz-Perez, C.; Canadillas-Delgado, L.; Ruiz-Garcia, R.; Cano, J. Chem. Commun. 2011, 47, 11035.  doi: 10.1039/c1cc15087a

    57. [57]

      Carvalho, C. P.; Dominguez, Z.; Silva, J. P. D.; Pischel, U. Chem. Commun. 2015, 51, 2698.  doi: 10.1039/C4CC09336D

    58. [58]

      For selected reviews:
      (a) Sieburth, S. M.; Cunard, N. T. Tetrahedron 1996, 52, 6251.
      (b) Hoffmann, N. Chem. Rev. 2008, 108, 1052.
      (c) Meier, H.; Cao, D. Chem. Soc. Rev. 2013, 42, 143.

  • 加载中
    1. [1]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    2. [2]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    3. [3]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    4. [4]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    5. [5]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    6. [6]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    7. [7]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    8. [8]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    9. [9]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    10. [10]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    11. [11]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    12. [12]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    13. [13]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    14. [14]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    15. [15]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    16. [16]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    17. [17]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    18. [18]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    19. [19]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    20. [20]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

Metrics
  • PDF Downloads(277)
  • Abstract views(10109)
  • HTML views(4228)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return