Citation: Wang Bing, Li Na, Liu Teng, Wang Ying'ai, Wang Xiaojing, Sun Jie. Research Progress on Synthesis of Nitric Oxide Donor Compounds[J]. Chinese Journal of Organic Chemistry, ;2017, 37(4): 777-797. doi: 10.6023/cjoc201610035 shu

Research Progress on Synthesis of Nitric Oxide Donor Compounds

  • Corresponding author: Wang Xiaojing, xiaojing6@gmail.com Sun Jie, 635775299@qq.com
  • Received Date: 21 October 2016
    Revised Date: 29 December 2016

    Fund Project: the Natural Science Foundation of Shandong Province ZR2015YL041

Figures(39)

  • Nitric oxide as a biological messenger or effector molecule plays an important physiological role in the body. Owing to its various biological activities, it has received wide attention in clinical practice. Insufficient NO production in vivo is closely related with a variety of diseases. NO donor compounds can release NO in vivo to treat and prevent many diseases. With its wide application in medicine, the methods for the synthesis of NO donor compounds have attracted much attention of researchers. In this paper, the recent advances in the past 10 years in synthetic methods for NO donor compounds are reviewed.
  • 加载中
    1. [1]

      Azizzadeh, B.; Yip, H. T.; Blackwell, K. E.; Horvath, S.; Calcaterra, T. C.; Buga, G. M. Laryngoscope 2001, 111, 1896.  doi: 10.1097/00005537-200111000-00004

    2. [2]

      Huerta, S.; Chilka, S.; Bonavida, B. Int. J. Oncol. 2008, 33, 909.

    3. [3]

      Agurla, S.; Gayatri, G.; Raghavendra, A. S. Nitric Oxide 2014, 43, 89.  doi: 10.1016/j.niox.2014.07.004

    4. [4]

      Jin, R. C.; Loscalzo, J. J. Blood Med. 2010, 2010, 147.

    5. [5]

      Esplugues, J. V. Br. J. Pharmacol. 2002, 135, 1079.  doi: 10.1038/sj.bjp.0704569

    6. [6]

      Wallace, J. L. Mem. Inst. Oswaldo Cruz 2005, 100(suppl. 1), 5.

    7. [7]

      David, H.; Tracy, R. J. Pharm. Pharmacol. 2007, 59, 3.  doi: 10.1211/jpp.59.1.0002

    8. [8]

      Afshar, J. K.; Pluta, R. M.; Boock, R. J.; Thompson, B. G.; Oldfield, E. H. J. Neurosurg. 1995, 83, 118.  doi: 10.3171/jns.1995.83.1.0118

    9. [9]

      Rajagopalan, S.; Harrison, D. G. Circulation 1996, 94, 240.  doi: 10.1161/01.CIR.94.3.240

    10. [10]

      Steudel, W.; Scherrer-Crosbie, M.; Bloch, K. D.; Weimann, J.; Huang, P. L.; Jones, R. C. J. Clin. Invest. 1998, 101, 2468.  doi: 10.1172/JCI2356

    11. [11]

      Suzuki, H.; Shimosegawa, T.; Ohara, S.; Toyota, T. J. Gastroenterol. 1999, 34, 172.  doi: 10.1007/s005350050239

    12. [12]

      Kuo, P. C.; Schroeder, R. A. Ann. Surg. 1995, 221, 220.  doi: 10.1097/00000658-199503000-00003

    13. [13]

      Bradley, S. A.; Steinert, J. R. J. Neurosci. Methods 2015, 245, 116.  doi: 10.1016/j.jneumeth.2015.02.024

    14. [14]

      Serafim, R. A.; Primi, M. C.; Trossini, G. H. Curr. Med. Chem. 2012, 19, 386.  doi: 10.2174/092986712803414321

    15. [15]

      Carradori, S.; Mollica, A.; Monte, C. Molecules 2015, 20, 5667.  doi: 10.3390/molecules20045667

    16. [16]

      Bian, H. Y. Ph.D. Dissertation, Shandong University, Shandong, 2011 (in Chinese).

    17. [17]

      Abdellatif, K. R.; Chowdhury, M. A.; Dong, Y.; Das, D.; Yu, G.; Velazquez, C. A.; Suresh, M. R.; Knaus, E. E. Bioorg. Med. Chem. Lett. 2009, 19, 3014.  doi: 10.1016/j.bmcl.2009.04.059

    18. [18]

      Abuo-Rahma, E. D. A. A.; Abdel-Aziz, M.; Mai, A. E. M.; Farag, H. H. Bioorg. Med. Chem. 2012, 20, 195.  doi: 10.1016/j.bmc.2011.11.012

    19. [19]

      Luo, G.; Chen, Y. Y. Chin. J. New Drugs 2010, 19, 1322 (in Chinese).

    20. [20]

      López, G. V.; Blanco, F.; Hernández, P.; Ferreira, A.; Piro, O. E.; Batthyány, C.; González, M.; Rubbo, H.; Cerecetto, H. Bioorg. Med. Chem. 2007, 15, 6262.  doi: 10.1016/j.bmc.2007.06.019

    21. [21]

      Abdel-Hafez, E. S. M. N.; Abuo-Rahma, E. D. A. A.; Abdel-Aziz, M.; Radwan, M. F.; Farag, H. Bioorg. Med. Chem. 2009, 17, 3829.  doi: 10.1016/j.bmc.2009.04.037

    22. [22]

      Rolando, B.; Filieri, A.; Chegaev, K.; Lazzarato, L.; Giorgis, M.; De Nardi, C.; Fruttero, R.; Martel, S.; Carrupt, P. A.; Gasco, A. Bioorg. Med. Chem. 2012, 20, 841.  doi: 10.1016/j.bmc.2011.11.065

    23. [23]

      Digiacomo, M.; Martelli, A.; Testai, L.; Lapucci, A.; Breschi, M. C.; Calderone, V.; Rapposelli, S. Bioorg. Med. Chem. 2015, 23, 422.  doi: 10.1016/j.bmc.2014.12.043

    24. [24]

      Konter, J.; Mollmann, U.; Lehmann, J. Bioorg. Med. Chem. 2008, 16, 8294.  doi: 10.1016/j.bmc.2008.05.008

    25. [25]

      Bertinaria, M.; Rolando, B.; Giorgis, M.; Montanaro, G.; Marini, E.; Collino, M.; Benetti, E.; Daniele, P. G.; Fruttero, R.; Gasco, A. Eur. J. Med. Chem. 2012, 54, 103.  doi: 10.1016/j.ejmech.2012.04.032

    26. [26]

      Biava, M.; Battilocchio, C.; Poce, G.; Alfonso, S.; Consalvi, S.; Di Capua, A.; Calderone, V.; Martelli, A.; Testai, L.; Sautebin, L.; Rossi, A.; Ghelardini, C.; Di Cesare Mannelli, L.; Giordani, A.; Persiani, S.; Colovic, M.; Dovizio, M.; Patrignani, P.; Anzini, M. Bioorg. Med. Chem. 2014, 22, 772.  doi: 10.1016/j.bmc.2013.12.008

    27. [27]

      Liu, W.; Liu, C.; Gong, C.; Lin, W.; Guo, C. Bioorg. Med. Chem. Lett. 2009, 19, 1647.  doi: 10.1016/j.bmcl.2009.02.005

    28. [28]

      Peng, S. M.; Zou, X. Q.; Ding, H. L.; Ding, Y. L.; Lin, Y. B. Bioorg. Med. Chem. Lett. 2009, 19, 1264.  doi: 10.1016/j.bmcl.2008.12.116

    29. [29]

      Dong, X.; Du, L.; Pan, Z.; Liu, T.; Yang, B.; Hu, Y. Eur. J. Med. Chem. 2010, 45, 3986.  doi: 10.1016/j.ejmech.2010.05.054

    30. [30]

      Zou, X. Q.; Peng, S. M.; Hu, C. P.; Tan, L. F.; Yuan, Q.; Deng, H. W.; Li, Y. J. Bioorg. Med. Chem. 2010, 18, 3020.  doi: 10.1016/j.bmc.2010.03.056

    31. [31]

      Bai, R.; Yang, X.; Zhu, Y.; Zhou, Z.; Xie, W.; Yao, H.; Jiang, J.; Liu, J.; Shen, M.; Wu, X.; Xu, J. Bioorg. Med. Chem. 2012, 20, 6848.  doi: 10.1016/j.bmc.2012.09.043

    32. [32]

      Wang, Q. Q.; Cheng, N.; Zheng, X. W.; Peng, S. M.; Zou, X. Q. Bioorg. Med. Chem. 2013, 21, 4301.  doi: 10.1016/j.bmc.2013.04.066

    33. [33]

      Bhandari, S. V.; Bothara, K. G.; Patil, A. A.; Chitre, T. S.; Sarkate, A. P.; Gore, S. T.; Dangre, S. C.; Khachane, C. V. Bioorg. Med. Chem. 2009, 17, 390.  doi: 10.1016/j.bmc.2008.10.032

    34. [34]

      Bhandari, S. V.; Dangre, S. C.; Bothara, K. G.; Patil, A. A.; Sarkate, A. P.; Lokwani, D. K.; Gore, S. T.; Deshmane, B. J.; Raparti, V. T.; Khachane, C. V. Eur. J. Med. Chem. 2009, 44, 4622.  doi: 10.1016/j.ejmech.2009.06.035

    35. [35]

      Mourad, M. A.; Abdel-Aziz, M.; Abuo-Rahma Gel, D.; Farag, H. H. Eur. J. Med. Chem. 2012, 54, 907.  doi: 10.1016/j.ejmech.2012.05.030

    36. [36]

      Fang, L.; Feng, M.; Chen, F. Bioorg. Med. Chem. 2016, 24, 4611.  doi: 10.1016/j.bmc.2016.07.066

    37. [37]

      Zhang, Y. C.; Zhou, J. P.; Wu, X. M.; Pan, W. H. Chin. Chem. Lett. 2009, 20, 302.  doi: 10.1016/j.cclet.2008.11.012

    38. [38]

      Tamboli, Y.; Lazzarato, L.; Marini, E.; Guglielmo, S.; Novelli, M.; Beffy, P.; Masiello, P.; Fruttero, R.; Gasco, A. Bioorg. Med. Chem. Lett. 2012, 22, 3810.  doi: 10.1016/j.bmcl.2012.03.103

    39. [39]

      Kutty, S. K.; Barraud, N.; Pham, A.; Iskander, G.; Rice, S. A.; Black, D. S.; Kumar, N. J. Med. Chem. 2013, 56, 9517.  doi: 10.1021/jm400951f

    40. [40]

      Huang, Q.; Rui, E. Y.; Cobbs, M.; Dinh, D. M.; Gukasyan, H. J.; Lafontaine, J. A.; Mehta, S.; Patterson, B. D.; Rewolinski, D. A.; Richardson, P. F.; Edwards, M. P. J. Med. Chem. 2015, 58, 2821.  doi: 10.1021/acs.jmedchem.5b00043

    41. [41]

      Abdellatif, K. R.; Chowdhury, M. A.; Dong, Y.; Chen, Q. H.; Knaus, E. E. Bioorg. Med. Chem. 2008, 16, 3302.  doi: 10.1016/j.bmc.2007.12.006

    42. [42]

      Kaur, J.; Bhardwaj, A.; Huang, Z.; Narang, D.; Chen, T. Y.; Plane, F.; Knaus, E. E. J. Med. Chem. 2012, 55, 7883.  doi: 10.1021/jm300997w

    43. [43]

      Xu, G. G.; Deshpande, T. M.; Ghatge, M. S.; Mehta, A. Y.; Omar, A. S.; Ahmed, M. H.; Venitz, J.; Abdulmalik, O.; Zhang, Y.; Safo, M. K. Biochemistry 2015, 54, 7178.  doi: 10.1021/acs.biochem.5b01074

    44. [44]

      Gazzano, E.; Chegaev, K.; Rolando, B. Bioorg. Med. Chem. 2016, 24, 967.  doi: 10.1016/j.bmc.2016.01.021

    45. [45]

      Fang, L. A. D.; Decker, M.; Kiehntopf, M.; Roegler, C.; Deufel, T.; Fleck, C.; Peng, S. X.; Zhang, Y. H.; Lehmann, J. J. Med. Chem. 2008, 51, 4.  doi: 10.1021/jm7009414

    46. [46]

      Chowdhury, M. A.; Abdellatif, K. R.; Dong, Y.; Yu, G.; Huang, Z.; Rahman, M.; Das, D.; Velazquez, C. A.; Suresh, M. R.; Knaus, E. E. Bioorg. Med. Chem. Lett. 2010, 20, 1324.  doi: 10.1016/j.bmcl.2010.01.014

    47. [47]

      Bertinaria, M.; Guglielmo, S.; Rolando, B.; Giorgis, M.; Aragno, C.; Fruttero, R.; Gasco, A.; Parapini, S.; Taramelli, D.; Martins, Y. C.; Carvalho, L. J. Eur. J. Med. Chem. 2011, 46, 1757.  doi: 10.1016/j.ejmech.2011.02.029

    48. [48]

      Zhao, J.; Prosser, K. E.; Chang, S. W. Dalton Trans. 2016, 45, 18079.  doi: 10.1039/C6DT03661A

    49. [49]

      Csont, T.; Ferdinandy, P. Pharmacol. Ther. 2005, 105, 57.  doi: 10.1016/j.pharmthera.2004.10.001

    50. [50]

      Feelisch, M.; Schonafinger, K.; Noack, E. Biochem. Pharmacol. 1992, 44, 1149.  doi: 10.1016/0006-2952(92)90379-W

    51. [51]

      Chen, L. Z. Y.; Kong, X. W.; Lan, E. D.; Huang, Z. J.; Peng, S. X.; Kaufman, D. L.; Tian, J. J. Med. Chem. 2008, 51, 4834.  doi: 10.1021/jm800167u

    52. [52]

      Ling, Y.; Ye, X.; Ji, H.; Zhang, Y.; Lai, Y.; Peng, S.; Tian, J. Bioorg. Med. Chem. 2010, 18, 3448.  doi: 10.1016/j.bmc.2010.03.077

    53. [53]

      Shi, J. B.; Xu, S.; Wang, Y. P.; Li, J. J.; Yao, Q. Z. Chin. Chem. Lett. 2011, 22, 899.  doi: 10.1016/j.cclet.2011.01.010

    54. [54]

      Tang, W.; Xie, J.; Xu, S.; Lv, H.; Lin, M.; Yuan, S.; Bai, J.; Hou, Q.; Yu, S. J. Med. Chem. 2014, 57, 7600.  doi: 10.1021/jm5007534

    55. [55]

      Dos Santos, J. L.; Lanaro, C.; Chelucci, R. C.; Gambero, S.; Bosquesi, P. L.; Reis, J. S.; Lima, L. M.; Cerecetto, H.; Gonzalez, M.; Costa, F. F.; Chung, M. C. J. Med. Chem. 2012, 55, 7583.  doi: 10.1021/jm300602n

    56. [56]

      Bertinaria, M.; Orjuelasanchez, P.; Marini, E. J. Med. Chem. 2015, 58, 7895.  doi: 10.1021/acs.jmedchem.5b01036

    57. [57]

      Bian, H.; Feng, J.; Li, M.; Xu, W. Bioorg. Med. Chem. Lett. 2011, 21, 7025.  doi: 10.1016/j.bmcl.2011.09.103

    58. [58]

      Borretto, E.; Lazzarato, L.; Spallotta, F.; Cencioni, C.; D'Alessandra, Y.; Gaetano, C.; Fruttero, R.; Gasco, A. ACS Med. Chem. Lett. 2013, 4, 994.  doi: 10.1021/ml400289e

    59. [59]

      Lu, M.-D.; Zhou, X.; Yu, Y.-J.; Li, P.-H.; Sun, W.-J.; Zhao, C.-G.; Zheng, Z.-Q.; You, T.; Wang, F.-H. Chin. Chem. Lett. 2013, 24, 415.  doi: 10.1016/j.cclet.2013.03.006

    60. [60]

      Ai, Y.; Kang, F.; Huang, Z.; Xue, X.; Lai, Y.; Peng, S.; Tian, J.; Zhang, Y. J. Med. Chem. 2015, 58, 2452.  doi: 10.1021/jm5019302

    61. [61]

      Duan, W.; Li, J.; Inks, E. S.; Chou, C. J.; Jia, Y.; Chu, X.; Li, X.; Xu, W.; Zhang, Y. J. Med. Chem. 2015, 58, 4325.  doi: 10.1021/acs.jmedchem.5b00317

    62. [62]

      Massarico Serafim, R. A.; Goncalves, J. E.; de Souza, F. P.; de Melo Loureiro, A. P.; Storpirtis, S.; Krogh, R.; Andricopulo, A. D.; Dias, L. C.; Ferreira, E. I. Eur. J. Med. Chem. 2014, 82, 418.  doi: 10.1016/j.ejmech.2014.05.077

    63. [63]

      Lakshman, T. R.; Deb, J.; Paine, T. K. Dalton Trans. 2016, 45, 14053.  doi: 10.1039/C6DT00838K

    64. [64]

      Davies, K. M.; Wink, D. A.; Saavedra, J. E.; Keefer, L. K. J. Am. Chem. Soc. 2001, 32, 5473.

    65. [65]

      Smith, D. J.; Chakravarthy, D.; Pulfer, S.; Simmons, M. L.; Hrabie, J. A.; Citro, M. L. J. Med. Chem. 1996, 39, 1148.  doi: 10.1021/jm950652b

    66. [66]

      Chakrapani, H.; Goodblatt, M. M.; Udupi, V.; Malaviya, S.; Shami, P. J.; Keefer, L. K.; Saavedra, J. E. Bioorg. Med. Chem. Lett. 2008, 18, 950.  doi: 10.1016/j.bmcl.2007.12.044

    67. [67]

      Chowdhury, M. A.; Abdellatif, K. R.; Dong, Y.; Knaus, E. E. Bioorg. Med. Chem. 2008, 16, 8882.  doi: 10.1016/j.bmc.2008.08.059

    68. [68]

      Abdellatif, K. R.; Moawad, A.; Knaus, E. E. Bioorg. Med. Chem. Lett. 2014, 24, 5015.  doi: 10.1016/j.bmcl.2014.09.024

    69. [69]

      Abdellatif, K. R.; Chowdhury, M. A.; Velazquez, C. A.; Huang, Z.; Dong, Y.; Das, D.; Yu, G.; Suresh, M. R.; Knaus, E. E. Bioorg. Med. Chem. Lett. 2010, 20, 4544.  doi: 10.1016/j.bmcl.2010.06.022

    70. [70]

      Abdellatif, K. R.; Chowdhury, M. A.; Dong, Y.; Knaus, E. E. Bioorg. Med. Chem. 2008, 16, 6528.  doi: 10.1016/j.bmc.2008.05.028

    71. [71]

      Abdellatif, K. R.; Chowdhury, M. A.; Dong, Y.; Velazquez, C.; Das, D.; Suresh, M. R.; Knaus, E. E. Bioorg. Med. Chem. 2008, 16, 9694.  doi: 10.1016/j.bmc.2008.10.001

    72. [72]

      Abdellatif, K. R.; Huang, Z.; Chowdhury, M. A.; Kaufman, S.; Knaus, E. E. Bioorg. Med. Chem. Lett. 2011, 21, 3951.  doi: 10.1016/j.bmcl.2011.05.017

    73. [73]

      Velázquez, C. A.; Chen, Q. H.; Citro, M. L.; Keefer, L. K.; Knaus, E. E. J. Med. Chem. 2008, 51, 1954.  doi: 10.1021/jm701450q

    74. [74]

      Xu, S.; Wang, G.; Yan, L. Bioorg. Med. Chem. Lett. 2016, 26, 2795.  doi: 10.1016/j.bmcl.2016.04.068

    75. [75]

      Abdellatif, K. R.; Chowdhury, M. A.; Dong, Y.; Das, D.; Yu, G.; Velazquez, C.; Suresh, M. R.; Knaus, E. E. Bioorg. Med. Chem. 2009, 17, 5182.  doi: 10.1016/j.bmc.2009.05.046

    76. [76]

      Smirnov, G. A.; Gordeev, P. B.; Nikitin, S. V. Russ. Chem. Bull. 2014, 63, 487.  doi: 10.1007/s11172-014-0457-2

    77. [77]

      Abuo-Rahma, E. D. A. A.; Abdel-Aziz, M.; Beshr, E. A.; Ali, T. F. Eur. J. Med. Chem. 2014, 71, 185.  doi: 10.1016/j.ejmech.2013.11.006

    78. [78]

      Cassien, M.; Petrocchi, C.; Thétiot-Laurent, S. Eur. J. Med. Chem. 2016, 119, 197.  doi: 10.1016/j.ejmech.2016.04.067

    79. [79]

      Vogt, M. A.; Vogel, A. S.; Pfeiffer, N.; Gass, P.; Inta, D. Eur. Neuropsychopharmacol. 2015, 25, 1848.  doi: 10.1016/j.euroneuro.2015.06.012

    80. [80]

      Mcquilken, A. C.; Yang, H.; Sutherlin, K. D.; Siegler, M. A.; Hodgson, K. O.; Britt, H. J. Am. Chem. Soc. 2013, 135, 14024.  doi: 10.1021/ja4064487

    81. [81]

      Sanina, N. A.; Kozub, G. I.; Kondratéva, T. A.; Korchagin, D. V.; Shilov, G. V.; Emelýanova, N. S. J. Mol. Struct. 2014, 1075, 159.  doi: 10.1016/j.molstruc.2014.06.024

    82. [82]

      Monti, M.; Ciccone, V.; Pacini, A. Pharmacol. Res. 2016, 107, 352.  doi: 10.1016/j.phrs.2016.03.033

    83. [83]

      Sakhaei, Z.; Kundu, S.; Donnelly, J. Chem. Commun. 2017, 53, 549.  doi: 10.1039/C6CC08745K

    84. [84]

      Kumar, R.; Kumar, S.; Bala, M. RSC Adv. 2016, 6, 72096.  doi: 10.1039/C6RA17223G

    85. [85]

      Grossi, L.; Montevecchi, P. C. J. Org. Chem. 2002, 67, 8625.  doi: 10.1021/jo026154+

    86. [86]

      Kumari, S.; Sammut, I. A.; Giles, G. I. Eur. J. Med. Chem. 2014, 737, 168.

    87. [87]

      Stasko, N. A.; Fischer, T. H.; Schoenfisch, M. H. Biomacromolecules 2008, 9, 834.  doi: 10.1021/bm7011746

    88. [88]

      Llop, J.; Gómez-Vallejo, V.; Bosque, M.; Quincoces, G.; Peñuelas, I. Appl. Radiat. Isot. 2009, 67, 95.  doi: 10.1016/j.apradiso.2008.09.014

    89. [89]

      Priora, R.; Margaritis, A.; Frosali, S.; Coppo, L.; Summa, D.; Giuseppe, D. D. Pharmacol. Res. 2011, 64, 289.  doi: 10.1016/j.phrs.2011.03.014

    90. [90]

      Ming, X.; Noriko, F.; Zhong, W.; Tingwei, C.; Satoshi, K.; Janczuk, A. J. Bioorg. Med. Chem. 2002, 10, 3049.  doi: 10.1016/S0968-0896(02)00155-4

    91. [91]

      Tyagi, A. K.; Cooney, D. A. Adv. Pharmacol. Chemother. 1984, 20, 69.  doi: 10.1016/S1054-3589(08)60265-3

  • 加载中
    1. [1]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    2. [2]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    3. [3]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    4. [4]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    7. [7]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    8. [8]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    9. [9]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    10. [10]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    11. [11]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    12. [12]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    13. [13]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    14. [14]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    15. [15]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    16. [16]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    17. [17]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    18. [18]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    19. [19]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    20. [20]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

Metrics
  • PDF Downloads(93)
  • Abstract views(3828)
  • HTML views(1060)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return