Citation: Zhang Mingdi, Liu Renrong, Gao Jianrong, Jia Yixia. Nickel-Catalyzed Intramolecular Addition of Aryl Bromides to C=O Bonds[J]. Chinese Journal of Organic Chemistry, ;2017, 37(3): 652-657. doi: 10.6023/cjoc201610009 shu

Nickel-Catalyzed Intramolecular Addition of Aryl Bromides to C=O Bonds

  • Corresponding author: Jia Yixia, yxjia@zjut.edu.cn
  • Received Date: 8 October 2016
    Revised Date: 29 November 2016

    Fund Project: Project supported by the National Natural Science Foundation of China 21522207Project supported by the National Natural Science Foundation of China 21372202

Figures(1)

  • A nickel-catalyzed intramolecular Grignard-type addition of aryl bromides to C=O was developed. By using Ni (dppe) Br2 as a catalyst and zinc powder as a reducing agent, the reactions of 2-((2-bromophenyl) amino)-1-arylethanones proceeded smoothly in 1, 2-dimethoxyethane solvent to afford 3-hydroxyindolines as intermediates, which underwent dehydration reaction to furnish a range of indole derivatives in moderate to excellent yields (up to 90%).
  • 加载中
    1. [1]

      (a) Okude, Y.; Hirano, S.; Hiyama, T.; Nozaki, H. J. Am. Chem. Soc. 1977, 99, 3179.
      (b) Jin, H.; Uenishi, J.; Christ, W. J.; Kishi, Y. J. Am. Chem. Soc. 1986, 108, 5644.
      (c) Takai, K.; Tagashira, M.; Kuroda, T.; Oshima, K.; Utimoto, K.; Nozakit, H. J. Am. Chem. Soc. 1986, 108, 6048.
      (d) Fürstner, A.; Shi, N. J. Am. Chem. Soc. 1996, 118, 2533.
      (e) Fürstner, A.; Shi, N. J. Am. Chem. Soc. 1996, 118, 12349.

    2. [2]

      (a) Satoh, T.; Itaya, T.; Miura, M. Chem. Lett. 1996, 25, 823.
      (b) Wang, S. Z.; Xie, K.; Tan, Z. Chem. Commun. 2009, 6469.
      (c) Cacchi, S.; Fabrizi, G.; Gavazza, F.; Goggiamani, A. Org. Lett. 2003, 5, 289.
      (d) Wei, X. Chin. J. Org. Chem. 2005, 25, 234 (in Chinese). (魏晓芳, 有机化学, 2005, 25, 234.)
      (e) Correa, A.; Martin, R. J. Am. Chem. Soc. 2009, 131, 15974.

    3. [3]

      (a) Quan, L.-G.; Lamrani, M.; Yamamoto, Y. J. Am. Chem. Soc. 2000, 122, 4827.
      (b) Pletnev, A. A.; Larock, R. C. J. Org. Chem. 2002, 67, 9428.
      (c) Solé, D.; Vallverdú, L.; Solans, X.; Font-Bardía, M.; Bonjoch, J. J. Am. Chem. Soc. 2003, 125, 1587.
      (d) Solé, D.; Serrano, O. Angew. Chem., Int. Ed. 2007, 46, 7270.
      (e) Solé, D.; Serrano, O. J. Org. Chem. 2008, 73, 9372.
      (f) Zhao, Y.-B.; Mariampillai, B.; Candito, D. A.; Laleu, B.; Li, M.-Z.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 1849.
      (g) Jia, Y.-X.; Katayev, D.; Kündig, E. P. Chem. Commun. 2010, 130.
      (h) Ying, L.; Kanai, M.; Shibasaki, M. Angew. Chem., Int. Ed. 2011, 50, 7120.
      (i) Shin, I.; Ramgren, S. D.; Krische, M. J. Tetrahedron 2015, 71, 5776.

    4. [4]

      (a) Majumdar, K. K.; Cheng, C.-H. Org. Lett. 2000, 2, 2295.
      (b) Huang, Y.-C.; Majumdar, K. K.; Cheng, C.-H. J. Org. Chem. 2002, 67, 1682.
      (c) Rayabarapu, D. K.; Chang, H.-T.; Cheng, C.-H. Chem. Eur. J. 2004, 10, 2991.
      (d) Hsieh, J. C.; Cheng, C.-H. Chem. Commun. 2005, 4554.
      (e) Yin, H.; Zhao, C.; You, H.; Lin, K.; Gong, H. Chem. Commun. 2012, 7034.
      (f) Wu, F.; Lu, W.; Qian, Q.; Ren, Q.; Gong, H. Org. Lett. 2012, 14, 3044.
      (g) Zhao, C.; Jia, X.; Wang, X.; Gong, H. J. Am. Chem. Soc. 2014, 136, 17645.
      (h) Correa, A.; Martin, R. J. Am. Chem. Soc. 2014, 136, 7253.
      (i) Zhang, M.-D.; Chen, B.; Ge, C.; Liu, R.-R.; Gao, J.-R.; Jia, Y.-X. Chin. J. Org. Chem. 2016, 36, 1636 (in Chinese).
      (张鸣頔, 陈斌, 葛晨, 刘人荣, 高建荣, 贾义霞, 有机化学, 2016, 36, 1636.) 

    5. [5]

      (a) Hu, J.-X.; Wu, H.; Li, C.-Y.; Sheng, W.-J.; Jia, Y.-X.; Gao, J.-R. Chem. Eur. J. 2011, 17, 5234.
      (b) He, J.-Q.; Chen C.; Yu, W.-B.; Liu, R.-R.; Xu, M.; Li, Y.-J.; Gao, J.-R.; Jia, Y.-X. Tetrahedron Lett. 2014, 55, 2805.

    6. [6]

      (a) Nakao, Y.; Kanyiva, K. S.; Oda, S.; Hiyama, T. J. Am. Chem. Soc. 2006, 128, 8146.
      (b) Kashulin, I. A.; Nifant'ev, I. E. J. Org. Chem. 2004, 69, 5476.
      (c) Ackermann, L.; Dell'Acqua, M.; Fenner, S.; Vicente, R.; Sandmann, R. Org. Lett. 2011, 13, 2358.
      (d) Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 8172.
      (e) Bedford, R. B.; Betham, M. J. Org. Chem. 2006, 71, 9403.

  • 加载中
    1. [1]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    2. [2]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    3. [3]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    4. [4]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    5. [5]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    6. [6]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    7. [7]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    8. [8]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    11. [11]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    14. [14]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    15. [15]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    16. [16]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    17. [17]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    18. [18]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    19. [19]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    20. [20]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

Metrics
  • PDF Downloads(9)
  • Abstract views(1377)
  • HTML views(214)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return