Citation: Dai Xiaoqiang, Zhu Yabo, Xu Xiaoliang, Weng Jianquan. Photocatalysis with g-C3N4 Applied to Organic Synthesis[J]. Chinese Journal of Organic Chemistry, ;2017, 37(3): 577-585. doi: 10.6023/cjoc201609015 shu

Photocatalysis with g-C3N4 Applied to Organic Synthesis

  • Corresponding author: Weng Jianquan, jqweng@zjut.edu.cn
  • Received Date: 13 September 2016
    Revised Date: 2 November 2016

    Fund Project: the Public Project of Zhejiang Province 2014C31127Project supported by the National Natural Science Foundation of China 30900959

Figures(2)

  • Graphite carbon nitride (g-C3N4) is a new metal-free photocatalyst. Due to its 2.7 eV band gap which makes it being absorbed in the visible region, as well as unique structure which gives it good photocatalytic activity, g-C3N4 has attracted more and more attentions in visible photocatalysis field. The application of photocatalysis with g-C3N4 in organic reactions, such as oxidation reaction, reduction reaction, carbon-carbon bond formation, cyclization reaction and other organic reactions, is summarized and its future outlook is also discussed.
  • 加载中
    1. [1]

      Hoffmann, N. Chem. Rev. 2008, 108, 1052.  doi: 10.1021/cr0680336

    2. [2]

      Bach, T.; Hehn, J. P. Angew. Chem., Int. Ed. 2011, 50, 1000.  doi: 10.1002/anie.v50.5

    3. [3]

      Ciamician, G. Science 1912, 36, 385.  doi: 10.1126/science.36.926.385

    4. [4]

      Tan, F.; Xiao, W. J. Acta Chim. Sinica 2015, 73, 85 (in Chinese).  doi: 10.6023/A14120860

    5. [5]

      Sun, X. Y.; Yu, S. Y. Chin. J. Org. Chem. 2016, 36, 239 (in Chinese).  doi: 10.6023/cjoc201512006
       

    6. [6]

      Guan, B. C.; Xu, X. L.; Wang, H.; Li, X. N. Chin. J. Org. Chem. 2016, 36, 1564 (in Chinese).  doi: 10.6023/cjoc201601012
       

    7. [7]

      Zuo, X.; Wu, W. l.; Su, W. P. Acta Chim. Sinica 2015, 73, 1298 (in Chinese).  doi: 10.6023/A15040284

    8. [8]

      Fujishima, A.; Hondak, K. Nature 1972, 238, 37.  doi: 10.1038/238037a0

    9. [9]

      Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253.  doi: 10.1039/B800489G

    10. [10]

      Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Chem. Rev. 2010, 110, 6503.  doi: 10.1021/cr1001645

    11. [11]

      Chatterjee, D.; Dasgupta, S. J. Photochem. Photobiol. C 2005, 6, 186.  doi: 10.1016/j.jphotochemrev.2005.09.001

    12. [12]

      Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Angew. Chem., Int. Ed. 2013, 52, 7372.  doi: 10.1002/anie.201207199

    13. [13]

      Lang, X. J.; Chen, X. D.; Zhao, J. C. Chem. Soc. Rev. 2014, 43, 473.  doi: 10.1039/C3CS60188A

    14. [14]

      Hamada, T.; Ishida, H.; Usui, S.; Watanabe, Y.; Tsumura, K.; Ohkubo, K. J. Chem. Soc., Chem. Commun. 1993, 11, 909.

    15. [15]

      Su, F. Z.; Mathew, S.; Lipner, G.; Fu, X. Z.; Wang, X. C. J. Am. Chem. Soc. 2011, 331, 195.

    16. [16]

      Liebig, J. V. Ann. Pharm. 1834, 10, 10.

    17. [17]

      Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Angew. Chem., Int. Ed. 2006, 45, 4467.  doi: 10.1002/(ISSN)1521-3773

    18. [18]

      Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Chem. Commun. 2006, 43, 4530.

    19. [19]

      Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K. A.; Antonietti, M. Nat. Mater. 2009, 8, 76.  doi: 10.1038/nmat2317

    20. [20]

      Cao, S. W.; Low, J. X.; Yu, J. G.; Jaroniec. M. Adv. Mater. 2015, 27, 2150.  doi: 10.1002/adma.201500033

    21. [21]

      Yan, S. C.; Lv, S. B.; Li, Z. S.; Zou, Z. G. Dalton Trans. 2010, 39, 1488.  doi: 10.1039/B914110C

    22. [22]

      Chen, D. M.; Wang, K. W.; Xiang, D. G.; Zong, R. L.; Yao, W. Q.; Zhu, Y. F. Appl. Catal. B 2014, 147, 554.  doi: 10.1016/j.apcatb.2013.09.039

    23. [23]

      Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Angew. Chem., Int. Ed. 2006, 45, 4467.  doi: 10.1002/(ISSN)1521-3773

    24. [24]

      Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Chem. Commun. 2006, 43, 4530.

    25. [25]

      Su, F. Z.; Mathew, S. C.; Lipner, G.; Fu, X. Z.; Antonietti, M.; Blechert, S.; Wang, X. C. J. Am. Chem. Soc. 2010, 132, 16299.  doi: 10.1021/ja102866p

    26. [26]

      Zheng, Z. S.; Zhou, X. S. Chin. J. Chem. 2012, 30, 1683.  doi: 10.1002/cjoc.v30.8

    27. [27]

      Long, B. H.; Ding, Z. X.; Wang, X. C. ChemSusChem 2013, 6, 2074.  doi: 10.1002/cssc.v6.11

    28. [28]

      Chen, Y.; Zhang, J. S.; Zhang, M. W.; Wang, X. C. Chem. Sci. 2013, 4, 3244.  doi: 10.1039/c3sc51203g

    29. [29]

      Xiao, X. Y.; Jiang, J.; Zhang, L. Z. Appl. Catal. B 2013, 142, 487.

    30. [30]

      Shiraishi, Y.; Kanazawa, S.; Sugano, Y.; Tsukamoto, D.; Sa-kamoto, H.; Ichikawa, S.; Hirai, T. ACS Catal. 2014, 4, 774.  doi: 10.1021/cs401208c

    31. [31]

      Dai, X.; Xie, M. L; Meng, S. G.; Fu, X. L.; Chen, S. F. Appl. Catal. B 2014, 158, 382.

    32. [32]

      Zhang, P. F.; Deng, J.; Mao, J. Y.; Li, H. R.; Wang, Y. Chin. J. Catal. 2015, 36, 1580.  doi: 10.1016/S1872-2067(15)60871-3

    33. [33]

      Verma, S.; Nasir Baig, R. B.; Nadagouda, M. N.; Varma, R. S. ACS Sustainable Chem. Eng. 2016, 4, 1094.  doi: 10.1021/acssuschemeng.5b01163

    34. [34]

      Chen, X. F.; Zhang, J. S.; Fu, X. Z.; Antonietti, M.; Wang, X. C. J. Am. Chem. Soc. 2009, 131, 11658.  doi: 10.1021/ja903923s

    35. [35]

      Ding, Z. X.; Chen, X. F.; Antonietti, M.; Wang, X. C. ChemSus-Chem 2011, 4, 274.

    36. [36]

      Shiravand, G.; Badiei, A.; Ziarani, G. M.; Jafarabadi, M.; Hamzehloo, M. Chin. J. Catal. 2012, 33, 1347.  doi: 10.1016/S1872-2067(11)60422-1

    37. [37]

      Zhang, P. F.; Gong, Y. T.; Li, H. R.; Chen, Z. R.; Wang, Y. RSC Adv. 2013, 3, 5121.  doi: 10.1039/c3ra23357j

    38. [38]

      Ye, X. J.; Cui, Y. J.; Wang, X. C. ChemSusChem 2014, 7, 738.  doi: 10.1002/cssc.201301128

    39. [39]

      Ye, X. J.; Cui, Y. J.; Qiu, X. Q.; Wang, X. C. Appl. Catal. B 2014, 152, 383.

    40. [40]

      Su, F. Z.; Mathew, S. C.; Möhlmann, L.; Antonietti, M.; Wang, X. C.; Blechert, S. Angew. Chem., Int. Ed. 2011, 50, 657.  doi: 10.1002/anie.v50.3

    41. [41]

      Zhang, P. F.; Wang, Y.; Yao, J.; Wang, C. M.; Yan, C.; Antonietti, M.; Li, H. R. Adv. Synth. Catal. 2011, 353, 1447.  doi: 10.1002/adsc.201100175

    42. [42]

      Zhang, P. F.; Wang, Y.; Li, H. R.; Antonietti, M. Green Chem. 2012, 14, 1904.  doi: 10.1039/c2gc35148j

    43. [43]

      Zhang, H. Y.; Liu, W. J.; Fu, M. L.; Cen, J. H. Lin, J. X.; Cao, H. Appl. Catal. A 2013, 468, 184.  doi: 10.1016/j.apcata.2013.08.008

    44. [44]

      Wang, H.; Jiang, S. L.; Chen, S. C.; Li, D. D.; Zhang, X. D.; Shao, W.; Sun, X. S.; Xie, J. F.; Zhao, Z.; Zhang, Q.; Tian, Y. P.; Xie, Y. Adv. Mater. 2016, 28, 6940.  doi: 10.1002/adma.201601413

    45. [45]

      Xu, X. L.; Mao, R. J.; Li, X. N. CN 105330688, 2016[Chem. Abstr. 2016, 164, 350027].

    46. [46]

      Mao, J.; Peng, T. Y.; Zhang, X. H.; Li, K.; Ye, L. Q.; Zan, L. Catal. Sci. Technol. 2013, 3, 1253.  doi: 10.1039/c3cy20822b

    47. [47]

      Niu, P.; Yang, Y. Q.; Yu, J. C.; Liu, G.; Cheng, H. M. Chem. Commun. 2014, 50, 10837.  doi: 10.1039/C4CC03060E

    48. [48]

      Yu, W. L.; Xu, D. F.; Peng, T. Y. J. Mater. Chem. A 2015, 3, 19936.  doi: 10.1039/C5TA05503B

    49. [49]

      Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T. Chem. Commun. 2015, 51, 858.  doi: 10.1039/C4CC08996K

    50. [50]

      Huang, Q.; Yu, J. G.; Cao, S. W.; Cui, C.; Cheng, B. Appl. Surf. Sci. 2015, 358, 350.  doi: 10.1016/j.apsusc.2015.07.082

    51. [51]

      Sagara, N.; Kamimura, S.; Tsubota, T.; Ohno, T. Appl. Catal. B 2016, 192, 193.  doi: 10.1016/j.apcatb.2016.03.055

    52. [52]

      Zhang, X. J.; Wang, L.; Du, Q. C.; Wang, Z. Y.; Ma, S. G.; Yu, M. J. Colloid Interface Sci. 2016, 464, 89.  doi: 10.1016/j.jcis.2015.11.022

    53. [53]

      Ohon, T.; Murakami, N.; Koyanagi, T.; Yang, Y. J. CO2 Util. 2014, 6, 17.  doi: 10.1016/j.jcou.2014.02.002

    54. [54]

      Gang, M. Y.; He, G. W.; Li, Z.; Cao, K. T.; Li, Z. Y.; Yin, Y. H.; Wu, H.; Jiang, Z. Y. J. Membr. Sci. 2016, 507, 1.  doi: 10.1016/j.memsci.2016.02.004

    55. [55]

      Nasir Baig, R. B.; Verma, S.; Varma, R. S.; Nadagouda, M. N. ACS Sustainable Chem. Eng. 2016, 4, 1661.  doi: 10.1021/acssuschemeng.5b01610

    56. [56]

      Li, D. S.; Hu, F. C.; Hou, D. F.; Qiao, X. Q.; Tian, F. Y. CN 105642329, 2016[Chem. Abstr. 2016, 165, 108778].

    57. [57]

      Kiskan, B.; Zhang, J. S.; Wang, X. C.; Antonietti, M.; Yagci, Y. ACS Macro Lett. 2012, 1, 546.  doi: 10.1021/mz300116w

    58. [58]

      Möhlmann, L.; Baar, M.; Rieß, J.; Antonietti, M.; Wang, X. C.; Blechert, S. Adv. Synth. Catal. 2012, 354, 1909.  doi: 10.1002/adsc.v354.10

    59. [59]

      Moehlmann, L.; Blechert, S. Adv. Synth. Catal. 2014, 356, 2825.  doi: 10.1002/adsc.201400551

    60. [60]

      Baar, M.; Blechert, S. Chem. Eur. J. 2015, 21, 526.  doi: 10.1002/chem.v21.2

    61. [61]

      Song, L. M.; Zhang, S. J.; Wu, X. Q.; Tian, H. F.; Wei, Q. W. Ind. Eng. Chem. Res. 2012, 51, 9510.  doi: 10.1021/ie3010226

    62. [62]

      Ding, Z. X.; Chen, X. F.; Antonietti, M.; Wang, X. C. ChemSus-Chem 2011, 4, 274.

    63. [63]

      Woźnica, M.; Chaoui, N.; Taabache, S.; Blechert, S. Chem. Eur. J. 2014, 20, 14624.  doi: 10.1002/chem.v20.45

    64. [64]

      Song, T.; Zhou, B.; Peng, G. W.; Zhang, Q. B.; Wu, L. Z.; Liu, Q.; Wang, Y. Chem. Eur. J. 2014, 20, 678.  doi: 10.1002/chem.v20.3

    65. [65]

      Martin, D. J.; Reardon, P. J. T.; Moniz, S. J. A.; Tang, J. W. J. Am. Chem. Soc. 2014, 136, 12568.  doi: 10.1021/ja506386e

    66. [66]

      Liu, J.; Huang, J. H.; Zhou, H.; Antonietti, M. ACS. Appl. Mater. Interfaces 2014, 6, 8434.  doi: 10.1021/am501319v

    67. [67]

      Kong, H. J.; Won, D. H.; Kim, J.; Woo, S. I. Chem. Mater. 2016, 28, 1318.  doi: 10.1021/acs.chemmater.5b04178

    68. [68]

      Hu, X. F.; Ji, H. H.; Chang, F.; Luo, Y. M. Catal. Today 2014, 224, 34.  doi: 10.1016/j.cattod.2013.11.038

    69. [69]

      Yang, J.; Chen, H. H.; Gao, J. H.; Yan, T. T.; Zhou, F. Y.; Cui, S. H.; Bi, W. T. Mater. Lett. 2016, 164, 183.  doi: 10.1016/j.matlet.2015.10.130

    70. [70]

      Chen, X. X.; Huang, X. T.; Yi, Z. G. Chem. Eur. J. 2014, 20, 17590.  doi: 10.1002/chem.201404284

    71. [71]

      Chi, F. L.; Zhou, G. D.; Song, B.; Lv, Y. H.; Ran, S. L. CN 105148975, 2015[Chem. Abstr. 2015, 164, 119258].

    72. [72]

      Ma, S. S.; Xue, J. J.; Zhou, Y. M.; Zhang, Z. W.; Cai, Z. L.; Zhu, D. B.; Liang, S. RSC Adv. 2015, 5, 64976.  doi: 10.1039/C5RA10447E

    73. [73]

      Liu, Z. R.; Zheng, H.; Yang, H. X.; Hao, L.; Wen, L.; Xu, T. Z.; Wu, S. Y. RSC Adv. 2016, 6, 54215.  doi: 10.1039/C6RA06730A

    74. [74]

      Cui, Y. M.; Li, H. Q.; Miao, H. CN 105195221, 2015[Chem. Abstr. 2015, 164, 119258].

    75. [75]

      Pan, X. Y.; Chen, X. X.; Yi, Z. G. ACS Appl. Mater. Interfaces 2016, 8, 167060.

    76. [76]

      Dong, F. Zhao, Z. W.; Sun, Y. J.; Zhang, Y. X.; Yan, S.; Wu, Z. B. Environ. Sci. Technol. 2015, 49, 12432.  doi: 10.1021/acs.est.5b03758

    77. [77]

      Ou, M.; Zhong, Q.; Zhang, S. L.; Yu, L. M. J. Alloys Compd. 2015, 626, 401.  doi: 10.1016/j.jallcom.2014.11.148

    78. [78]

      Song, X.; Hu, Y.; Zheng, M. M.; Wei, C. H. Appl. Catal. B 2016, 182, 587.  doi: 10.1016/j.apcatb.2015.10.007

    79. [79]

      Zhang, Z. Z.; Xu, M. K.; Ho, W. K.; Zhang, X. W.; Yang, Z. Y.; Wang, X. X. Appl. Catal. B 2016, 184, 174.  doi: 10.1016/j.apcatb.2015.11.034

    80. [80]

      Li, Y. H.; Yang, L. P.; Dong, G. H.; Ho, W. K. Molecules 2016, 21, 36.

  • 加载中
    1. [1]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    2. [2]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    3. [3]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    4. [4]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    5. [5]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    7. [7]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    8. [8]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    9. [9]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    12. [12]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    13. [13]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    14. [14]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    15. [15]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    16. [16]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    17. [17]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    18. [18]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    19. [19]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    20. [20]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

Metrics
  • PDF Downloads(102)
  • Abstract views(4783)
  • HTML views(1277)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return