Citation: Liu Yuanyuan, Zhang Wanbin. Development of Cu-Catalyzed Asymmetric Addition of Boron to Olefin[J]. Chinese Journal of Organic Chemistry, ;2016, 36(10): 2249-2271. doi: 10.6023/cjoc201609005 shu

Development of Cu-Catalyzed Asymmetric Addition of Boron to Olefin

  • Corresponding author: Liu Yuanyuan, yyliu@chem.ecnu.edu.cn Zhang Wanbin, wanbin@sjtu.edu.cn
  • Received Date: 5 September 2016
    Revised Date: 24 September 2016

    Fund Project: Project supported by the National Natural Science Foundation of China No.21502052

Figures(20)

  • The Cu-catalyzed asymmetric addition of borons to olefins is an efficient method to the construct chiral C-B bonds and has therefore gained much attention over recent years. This review describes recent research progress concerning Cu-catalyzed asymmetric additions of borons to olefins on the view of the types of olefin substrates and reactions. Such reactions include hydroborations, cascade reactions, difunctionalization reactions, and their associated mechanisms and developments. Additionally, research trends of this area are also discussed.
  • 加载中
    1. [1]

      Smoum, R.; Rubinstein, A.; Dembitsky, V. M.; Srebnik, M. Chem. Rev. 2012, 112, 4156. (b) Suzuki, N.; Suzuki, T.; Ota, Y.; Nakano, T.; Kurihara, M.; Okuda, H.; Yamori, T.; Tsumoto, H.; Nakagawa, H.; Miyata, N. J. Med. Chem. 2009, 52, 2909. (c) Hecker, S. J.; Reddy, K. R.; Totrov, M.; Hirst, G. C.; Lo-movskaya, O.; Griffith, D. C.; King, P.; Tsivkovski, R.; Sun, D.; Sabet, M.; Tarazi, Z.; Clifton, M. C.; Atkins, K.; Raymond, A.; Potts, K. T.; Abendroth, J.; Boyer, S. H.; Loutit, J. S.; Morgan, E. E.; Durso, S.; Dudley, M. N. J. Med. Chem. 2015, 58, 3682.

    2. [2]

      Hartwig, J. F. Acc. Chem. Res. 2012, 45, 864. (b) He, J.; Jiang, H.; Takise, R.; Zhu, R.-Y., Chen, G.; Dai, H.-X.; Dhar, T. G. M.; Shi, J.; Zhang, H.; Cheng, P. T. W.; Yu, J.-Q. Angew. Chem., Int. Ed. 2016, 55, 785. 

    3. [3]

    4. [4]

      Mannig, D.; Noth, H. Angew. Chem., Int. Ed. Engl. 1985, 24, 878. 

    5. [5]

      Burgess, K.; Ohlmeyer, M. J. J. Org. Chem. 1988, 53, 5178. 

    6. [6]

      Ito, H.; Yamanaka, H.; Tateiwa, J.; Hosomi, A. Tetrahedron Lett. 2000, 41, 6821. (b) Takahashi, K.; Ishiyama, T.; Miyaura, N. Chem. Lett. 2000, 982. (c) Takahashi, K.; Ishiyama, T.; Miyaura, N. J. Organomet. Chem. 2001, 625, 47. (d) Laitar, D. S.; Müller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2005, 127, 17196.

    7. [7]

      Mun, S.; Lee, J.-E.; Yun, J. Org. Lett. 2006, 8, 4887. (b) Lee, J.-E.; Yun, J. Angew. Chem., Int. Ed. 2008, 47, 145. (c) Sim, H.-S.; Feng, X.; Yun, J. Chem. Eur. J. 2009, 15, 1939. (d) Zhao, H.; Dang, L.; Marder, T. B.; Lin, Z. J. Am. Chem. Soc. 2008, 130, 5586.

    8. [8]

      Fleming, W. J.; Müller-Bunz, H. M.; Lillo, V.; Fernández, E.; Guiry, P. J. Org. Biomol. Chem. 2009, 7, 2520. 

    9. [9]

      Chen, I.-H.; Yin, L.; Itano, W.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 11664. 

    10. [10]

      Feng, X.; Yun, J. Chem. Commun. 2009, 45, 6577.

    11. [11]

      Chen, I.-H.; Kanai, M.; Shibasaki, M. Org. Lett. 2010, 12, 4098.

    12. [12]

      Lillo, V.; Prieto, A.; Bonet, A.; Díaz-Requejo, M. M.; Ramírez, J.; Pérez, P. J.; Fernández, E. Organometallics 2009, 28, 659.

    13. [13]

      O'Brien, J. M.; Lee, K.-S.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 10630. (b) Lee, K.-S.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 2898. 

    14. [14]

      Feng, X.; Yun, J. Chem. Eur. J. 2010, 16, 13609. 

    15. [15]

      Park, J. K.; Lackey, H. H.; Rexford, M. D.; Kovnir, K.; Shatruk, M.; McQuade, D. T. Org. Lett. 2010, 12, 5008. (b) Huang, L.; Cao, Y.; Zhao, M.; Tang, Z.; Sun, Z. Org. Biomol. Chem. 2014, 12, 6554. 

    16. [16]

      Hirsch-Weil, D.; Abboud, K. A.; Hong, S. Chem. Commun. 2010, 46, 7525.

    17. [17]

      Hong, B.; Ma, Y.; Zhao, L.; Duan, W.; He, F.; Song, C. Tetrahedron:Asymmetry 2011, 22, 1055. (b) Zhao, L.; Ma, Y.; Duan, W.; He, F.; Chen, J.; Song, C. Org. Lett. 2012, 14, 5780. (c) Zhao, L.; Ma, Y.; He, F.; Duan, W.; Chen, J.; Song, C. J. Org. Chem. 2013, 78, 1677. (d) Check, C. T.; Jang, K. P.; Schwamb, C. B.; Wong, A. S.; Wang, M. H.; Scheidt, K. A. Angew. Chem., Int. Ed. 2015, 54, 4264.

    18. [18]

      Zhang, J.-L.; Chen, L.-A.; Xu, R.-B.; Wang, C.-F.; Ruan, Y.-P.; Wang, A.-E.; Huang, P.-Q. Tetrahedron:Asymmetry 2013, 24, 492.

    19. [19]

      Iwai, T.; Akiyama, Y.; Sawamura, M. Tetrahedron:Asymmetry 2013, 24, 729. 

    20. [20]

      Sole, C.; Bonet, A.; de Vries, A. H. M.; de Vries, J. G.; Lefort, L.; Gulyás, H.; Fernández, E. Organometallics 2012, 31, 7855. (b) Solé, C.; Whiting, A.; Gulyás, H.; Fernández, E. Adv. Synth. Catal. 2011, 353, 376. (c) Solé, C.; Tatla, A.; Mata, J. A.; Whiting, A.; Gulyás, H.; Fer-nández, E. Chem. Eur. J. 2011, 17, 14248.

    21. [21]

      Liu, P.; Fukui, Y.; Tian, P.; He, Z.-T.; Sun, C.-Y.; Wu, N.-Y.; Lin, G.-Q. J. Am. Chem. Soc. 2013, 135, 11700.

    22. [22]

      Kobayashi, S.; Xu, P.; Endo, T.; Ueno, M.; Kitanosono, T. Angew. Chem., Int. Ed. 2012, 51, 12763. (b) Kitanosono, T.; Xu, P.; Kobayashi, S. Chem. Commun. 2013, 49, 8184. (c) Kitanosono, T.; Xu, P.; Isshiki, S.; Zhu, L.; Kobayashi, S. Chem. Commun. 201450, 9336. (d) Zhu, L.; Kitanosono, T.; Xu, P.; Kobayashi, S. Chem. Commun. 2015, 51, 11685. (e) Stavber, G.; Časar, Z. Appl. Organomet. Chem. 2013, 27, 159. 

    23. [23]

      Ibrahem, I.; Breistein, P.; Córdova, A. Angew. Chem., Int. Ed. 2011, 50, 12036. 

    24. [24]

      Moure, A. L.; Arrayás, R. G.; Carretero, J. C. Chem. Commun. 2011, 47, 6701. 

    25. [25]

      Hornillos, V.; Vila, C.; Otten, E.; Feringa, B. L. Angew. Chem., Int. Ed. 2015, 54, 7867. 

    26. [26]

      Lee, J. C. H.; McDonald, R.; Hall, D. G. Nat. Chem. 2013, 3, 894.

    27. [27]

      He, Z.-T.; Zhao, Y.-S.; Tian, P. Wang, C.-C.; Dong, H.-Q.; Lin, G.-Q. Org. Lett. 2014, 16, 1426.

    28. [28]

      Xie, J.-B.; Lin, S.; Luo, J.; Wu, J.; Winn, T. R.; Li, G. Org. Chem. Front. 2015, 2, 42. (b) Xie, J.-B.; Lin, S.; Qiao, S.; Li, G. Org. Lett. 2016, 18, 3926. 

    29. [29]

      Kubota, K.; Hayama, K.; Iwamoto, H.; Ito, H. Angew. Chem., Int. Ed. 2015, 54, 8809. 

    30. [30]

      Luo, Y.; Roy, I. D.; Madec, A. G. E.; Lam, H. W. Angew. Chem., Int. Ed. 2014, 53, 4186. 

    31. [31]

      Lou, Y.; Cao, P.; Jia, T.; Zhang, Y.; Wang, M.; Liao, J. Angew. Chem., Int. Ed. 2015, 54, 12134. 

    32. [32]

      Jarava-Barrera, C.; Parra, A.; López, A.; Cruz-Acosta, F.; Collado-Sanz, D.; Cárdenas, D. J.; Tortosa, M. ACS Catal. 2016, 6, 442. 

    33. [33]

      Noh, D.; Chea, H.; Ju, J.; Yun, J. Angew. Chem., Int. Ed. 2009, 48, 6062. (b) Xie, Y.; Hartwig, J. F. J. Am. Chem. Soc. 2016, 138, 6703. (c) Feng, X.; Jeon, H.; Yun, J. Angew. Chem., Int. Ed. 2013, 52, 3989. 

    34. [34]

      Lee, Y.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 3160. (b) Corbern, R.; Mszar, N. W.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2011, 50, 7079. 

    35. [35]

      Lee, Y.; Jang, H.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 18234. 

    36. [36]

      Kubota, K.; Yamamoto, E.; Ito, H. Adv. Synth. Catal. 2013, 355, 3527. 

    37. [37]

      Meng, F.; Jang, H.; Hoveyda, A. H. Chem. Eur. J. 2013, 19, 3204. 

    38. [38]

      Sasaki, Y.; Zhong, C.; Sawamura, M.; Ito, H. J. Am. Chem. Soc. 2010, 132, 1226. 

    39. [39]

      Jung, B.; Hoveyda, A. H. J. Am. Chem. Soc. 2012, 134, 1490. (b) Yuan, W.; Ma, S. Adv. Synth. Catal. 2012, 354, 1867. (c) Meng, F.; Jung, B.; Haeffner, F.; Hoveyda, A. H. Org. Lett. 2013, 15, 1414. (d) Semba, K.; Shinomiya, M.; Fujihara, T.; Terao, J.; Tsuji, Y. Chem. Eur. J. 2013, 19, 7125. 

    40. [40]

      Jang, H.; Jung, B.; Hoveyda, A. H. Org. Lett. 2014, 16, 4658. 

    41. [41]

      Kubota, K.; Watanabe, Y.; Hayama, K.; Ito, H. J. Am. Chem. Soc. 2016, 138, 4338. 

    42. [42]

      Kubota, K.; Watanabe, Y.; Ito, H. Adv. Synth. Catal. 2016, 358, 2379. 

    43. [43]

      Parra, A.; Amenos, L.; Guisan-Ceinos, M.; López, A.; Gar-cía-Ruano, J. L.; Tortosa, M. J. Am. Chem. Soc. 2014, 136, 15833. 

    44. [44]

      Tian, B.; Liu, Q.; Tong, X.; Tian, P.; Lin, G.-Q. Org. Chem. Front. 2014, 1, 1116. 

    45. [45]

      Ito, H.; Kawakami, C.; Sawamura, M. J. Am. Chem. Soc. 2005, 127, 16034. 

    46. [46]

      Ito, H.; Ito, S.; Sasaki, Y.; Matsuura, K.; Sawamura, M. J. Am. Chem. Soc. 2007, 129, 14856. (b) Yamamoto, E.; Takenouchi, Y.; Ozaki, T.; Miya, T.; Ito, H. J. Am. Chem. Soc. 2014, 136, 16515. 

    47. [47]

      Ito, H.; Kunii, H.; Sawamura, M. Nat. Chem. 2010, 2, 972.

    48. [48]

      Guzman-Martinez, A.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 10634. 

    49. [49]

      Park, J. K.; Lackey, H. H.; Ondrusek, B. A.; McQuade, D. T. J. Am. Chem. Soc. 2011, 133, 2410. 

    50. [50]

      Ito, H.; Okura, T.; Matsuura, K.; Sawamura, M. Angew. Chem., Int. Ed. 2010, 49, 560. 

    51. [51]

      Burns, A. R.; González, J. S.; Lam, H. W. Angew. Chem., Int. Ed. 2012, 51, 10827. 

    52. [52]

      Meng, F.; Jang, H.; Jung, B.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2013, 52, 5046. 

    53. [53]

      Meng, F.; Haeffner, F.; Hoveyda, A. H. J. Am. Chem. Soc. 2014, 136, 11304. 

    54. [54]

      Li, X.; Meng, F.; Torker, S.; Shi, Y.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2016, 55, 9997. 

    55. [55]

      Meng, F.; Li, X.; Torker, S.; Shi, Y.; Shen, X.; Hoveyda, H. A. Nature 2016, 537, 387. 

    56. [56]

      Zhao, Y.-S.; Tang, X.-Q.; Tao, J.-C.; Tian, P.; Lin, G.-Q. Org. Biomol. Chem. 2016, 16, 440.

    57. [57]

      Semba, K.; Nakao, Y. J. Am. Chem. Soc. 2014, 136, 7567. 

    58. [58]

      Logan, K. M.; Smith, K. B.; Brown, M. K. Angew. Chem., Int. Ed. 2015, 54, 5228. 

    59. [59]

      Jia, T.; Cao, P.; Wang, B.; Lou, Y.; Yin, X.; Wang, M.; Liao, J. J. Am. Chem. Soc. 2015, 137, 13760. 

    60. [60]

      Takemoto, Y.; Yoshida, H.; Takaki, K. Chem. Eur. J. 2012, 18, 14841. (b) Takemoto, Y.; Yoshida, H.; Takaki, K. Synthesis 2014, 46, 3024. 

    61. [61]

      Jia, T.; Cao, P.; Wang, D.; Lou, Y.; Liao, J. Chem. Eur. J. 2015, 21, 4918. 

    62. [62]

      Ito, H.; Kosaka, Y.; Nonoyama, K.; Sasaki, Y.; Sawamura, M. Angew. Chem., Int. Ed. 2008, 47, 7424. 

    63. [63]

      Ito, H.; Toyoda, T.; Sawamura, M. J. Am. Chem. Soc. 2010, 132, 5990. 

    64. [64]

      Zhong, C.; Kunii, S.; Kosaka, Y.; Sawamura, M.; Ito, H. J. Am. Chem. Soc. 2010, 132, 11440. 

    65. [65]

      Semba, K.; Bessho, N.; Fujihara, T.; Terao, J.; Tsuji, Y. Angew. Chem. Int. Ed. 2014, 53, 9007. 

    66. [66]

      Meng, F.; McGrath, K. P.; Hoveyda, A. H. Nature 2014, 513, 367. 

    67. [67]

      Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. J. Am. Chem. Soc. 2013, 135, 4934. 

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    4. [4]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    5. [5]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    6. [6]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    7. [7]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    8. [8]

      Qi Zhang Ziyu Liu Hongxia Tan Jun Tong Dazhen Xu . Research Progress on Direct Synthesis of β-Hydroxy Sulfones via Difunctionalization of Olefins. University Chemistry, 2025, 40(11): 199-209. doi: 10.12461/PKU.DXHX202412064

    9. [9]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    10. [10]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    11. [11]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    12. [12]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    13. [13]

      Chenyang WANGYiyan BAIWei ZHANGZhaorong LIUYuchun WANG . Performance of photo-assisted copper oxide catalyzed hydrolysis of ammonia borane to produce hydrogen. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 97-110. doi: 10.11862/CJIC.20250116

    14. [14]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    15. [15]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    16. [16]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    17. [17]

      Haotong MaMingyu HengYang XuWei BiYingchun MiaoShuning Xiao . Synergistic carbon doping and Cu loading on boron nitride via microwave synthesis for enhanced atmospheric CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(11): 100132-0. doi: 10.1016/j.actphy.2025.100132

    18. [18]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    19. [19]

      Wenwen Ma Lian Kong Jinyang Chu Li Ma Ziqing Ma Heyu Cheng Xinyuan Li Zhan Yu Zhen Zhao . Digitalization-Driven Olefin Production: Digital Design of Catalysts for CO2-Assisted Oxidation Dehydrogenation of Ethane to Ethylene. University Chemistry, 2026, 41(1): 363-372. doi: 10.12461/PKU.DXHX202506055

    20. [20]

      Xiyuan Zhang Rui Dong Yang Yang Jiapeng Ding Zhiwei Miao . Palladium-Catalyzed Tandem Cyclization of 4-Vinylbenzoxazinone and Indene-2-carbaldehyde: A Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(9): 361-367. doi: 10.12461/PKU.DXHX202410062

Metrics
  • PDF Downloads(0)
  • Abstract views(10097)
  • HTML views(3342)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return