Citation: Shao Changwei, Xu Weigang, Li Liang, Zhang Xinghua. Recent Advances of Transition Metal-Catalyzed P-C Coupling Reactions[J]. Chinese Journal of Organic Chemistry, ;2017, 37(2): 335-348. doi: 10.6023/cjoc201608030 shu

Recent Advances of Transition Metal-Catalyzed P-C Coupling Reactions

  • Corresponding author: Li Liang, lilianglcx@sit.edu.cn Zhang Xinghua, xhzhang@sit.edu.cn
  • Received Date: 29 August 2016
    Revised Date: 26 September 2016

    Fund Project: the National Natural Science Foundation of China 21502116the National Natural Science Foundation of China 21302127

Figures(16)

  • Organophosphorus compounds which contain P-C bonds have been widely used in photoelectric materials, retardant materials and medicinal chemistry. It is an important method for the synthesis of functional organophosphorus compounds from P (O)-H reagents using transition metal-catalyzed cross coupling reaction to form P-C bond. The recent development in this area is summarized on the basis of different types of carbon atom.
  • 加载中
    1. [1]

      Baumgartner, T.; Réau, R. Chem. Rev. 2006, 106, 4681.  doi: 10.1021/cr040179m

    2. [2]

      White, A. K.; Metcalf, W. W. Annu. Rev. Microbiol. 2007, 61, 379.  doi: 10.1146/annurev.micro.61.080706.093357

    3. [3]

      Metcalf, W. W.; van der Donk, W. A. Annu. Rev. Biochem. 2009, 78, 65.  doi: 10.1146/annurev.biochem.78.091707.100215

    4. [4]

      De Clercq, E. Med. Res. Rev. 2010, 30, 667.
       

    5. [5]

      De Clercq, E. Med. Res. Rev. 2011, 31, 118.  doi: 10.1002/med.v31.1

    6. [6]

      Dang, Q.; Kasibhatla, S. R.; Xiao, W.; Liu, Y.; DaRe, J.; Taplin, F.; Reddy, K. R.; Scarlato, G. R.; Gibson, T.; van Poelje, P. D.; Potter, S. C.; Erion, M. D. J. Med. Chem. 2010, 53, 441.  doi: 10.1021/jm901420x

    7. [7]

      Maryanoff, B. E. J. Med. Chem. 2004, 47, 769.  doi: 10.1021/jm030493t

    8. [8]

      Kumar, T. S.; Zhou, S.-Y.; Joshi, B. V.; Balasubramanian, R.; Yang, T.; Liang, B.-T.; Jacobson, K. A. J. Med. Chem. 2010, 53, 2562.  doi: 10.1021/jm9018542

    9. [9]

      Kang, S.-U.; Shi, Z.-D.; Worthy, K. M.; Bindu, L. K.; Dhar-mawardana, P. G.; Choyke, S. J.; Bottaro, D. P.; Fisher, R. J.; Burke, T. R., Jr. J. Med. Chem. 2005, 48, 3945.  doi: 10.1021/jm050059m

    10. [10]

      Haemers, T.; Wiesner, J.; Van Poecke, S.; Goeman, J.; Henschker, D.; Beck, E.; Jomaa, H.; Van Calenbergh, S. Bioorg. Med. Chem. Lett. 2006, 16, 1888.  doi: 10.1016/j.bmcl.2005.12.082

    11. [11]

      Seto, H.; Kuzuyama, T. Nat. Prod. Rep. 1999, 16, 589.  doi: 10.1039/a809398i

    12. [12]

      Schwan, A. L. Chem. Soc. Rev. 2004, 33, 218.  doi: 10.1039/B307538A

    13. [13]

      Glueck, D. S. Top. Organomet. Chem. 2010, 31, 65.
       

    14. [14]

      Tappe, F. M. J.; Trepohl, V. T.; Oestreich, M. Synthesis 2010, 3037.
       

    15. [15]

      (a) Rajeshwaran, G. G.; Nandakumar, M.; Sureshbabu, R.; Mohanakrishnan, A. K. Org. Lett. 2011, 13, 1270.
      (b) Barney, R. J.; Richardson, R. M.; Wiemer, D. F. J. Org. Chem. 2011, 76, 2875.

    16. [16]

      Cohen, R. J.; Fox, D. L.; Eubank, J. F.; Salvatore, R. N. Tetrahedron Lett. 2003, 44, 8617.  doi: 10.1016/j.tetlet.2003.09.045

    17. [17]

      Lavén, G.; Stawinski, J. Synlett 2009, 225.
       

    18. [18]

      Baslé, O.; Li, C.-J. Chem. Commun. 2009, 4124
       

    19. [19]

      Han, W.; Ofial, A. R. Chem. Commun. 2009, 6023.
       

    20. [20]

      Cheng, M.-X.; Ma, R.-S.; Yang, Q.; Yang, S.-D. Org. Lett. 2016, 18, 3262.  doi: 10.1021/acs.orglett.6b01514

    21. [21]

      Zhang, P.-B.; Zhang, L.-L.; Gao, Y.-Z.; Xu, J.; Fang, H.; Tang, G.; Zhao, Y.-F. Chem. Commun, 2015, 51, 7839.  doi: 10.1039/C5CC01904D

    22. [22]

      (a) Rueping, M.; Zhu, S.-Q; Koenigs, R. M. Chem. Commun. 2011, 47, 8679.
      (b) Hari, D. P.; König, B. Org. Lett. 2011, 13, 3852.
      (c) Xue, Q.-C.; Xie, J.; Jin, H.-M.; Cheng, Y.-X.; Zhu, C.-J. Org. Biomol. Chem. 2013, 11, 1606.
      (d) Wang, X.-Z.; Meng, Q.-Y.; Zhong, J.-J.; Gao, X.-W.; Lei, T.; Zhao, L.-M.; Li, Z.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Chem. Commun. 2015, 51, 11256.
      (e) Rueping, M.; Zoller, J.; Fabry, D. C.; Poscharny, K.; Koenigs, R. M.; Weirich, T. E.; Mayer, J. Chem. Eur. J. 2012, 18, 3478.

    23. [23]

      (a) Xu, J.; Li, X.-Q.; Gao, Y.-Z.; Zhang, L.-L; Chen, W.-Z.; Fang, H.; Tang, G.; Zhao, Y.-F. Chem. Commun. 2015, 51, 11240.
      (b) Gao, Y.-Z.; Li, X.-Q.; Xu, J.; Wu, Y.-L.; Chen, W.-Z.; Tang, G.; Zhao, Y.-F. Chem. Commun. 2015, 51, 1605.

    24. [24]

      Wu, J.; Gao, Y.-Z.; Zhao, X.; Zhang, L.-L; Chen, W.-Z.; Tang, G.; Zhao, Y.-F. RSC Adv. 2016, 6, 303.  doi: 10.1039/C5RA22570A

    25. [25]

      (a) Tappe, F. M. J.; Trepohl, V. T.; Oestreich, M. Synthesis 2010, 3037.
      (b) Han, L.-B.; Tanaka, M. Chem. Commun. 1999, 395.
      (c) Coundray, L.; Montchamp, J. Eur. J. Org. Chem. 2008, 3601.
      (d) Prim, D.; Campagne, J.; Joseph, D.; Andrioletti, B. Tetrahedron 2002, 58, 2041.
      (e) Schwan, A. L. Chem. Soc. Rev. 2004, 33, 218.
      (f) Glueck, D. S. Synlett 2007, 2627.

    26. [26]

      Seto, H.; Kuzuyama, T. Nat. Prod. Rep. 1999, 16, 589.  doi: 10.1039/a809398i

    27. [27]

      (a) Glueck, D. S. Top. Organomet. Chem. 2010, 31, 65.
      (b) Niu, M.; Fu, H.; Jiang, Y.; Zhao, Y. Chem. Commun. 2007, 272.
      (c) Han, L.-B.; Tanaka, M. J. Am. Chem. Soc. 1996, 118, 1571.
      (d) Han, L.-B.; Ono, Y.; Shimada, S. J. Am. Chem. Soc. 2008, 130, 2752.

    28. [28]

      Hirao T.; Masunaga T.; Ohshiro Y.; Agawa. T. Tetrahedron Lett. 1980, 21, 3595.  doi: 10.1016/0040-4039(80)80245-0

    29. [29]

      Hirao, T.; Masunaga, T.; Ohshiro, Y.; Agawa, T. Synthesis 1981, 56.
       

    30. [30]

      Hirao T.; Masunaga T.; Yamada N, Ohshiro, Y.; Agawa, T. Bull. Chem. Soc. Jpn. 1982, 55, 909.  doi: 10.1246/bcsj.55.909

    31. [31]

      Kalek, M.; Stawinski, J. Organometallics 2007, 26, 5840.  doi: 10.1021/om700797k

    32. [32]

      Xu, Y.-Y.; Zhang, J. Synthesis 1984, 778.
       

    33. [33]

      Bulot, J. J.; Aboujaoude, E. E.; Collignon N.; Savignac, P. Phosphorus Sulfur Relat. Elem. 1984, 21, 197.  doi: 10.1080/03086648408077657

    34. [34]

      Xu, Y.-Y.; Li, Z.; Xia, J.-Z.; Guo, H.; Huang, Y.-Z. Synthesis 1984, 781.
       

    35. [35]

      Xu, Y.-Y.; Zhang, J. J. Chem. Soc., Chem. Commun. 1986, 1606.
       

    36. [36]

      Lu, X.-Y.; Zhu, J.-Y. Synthesis 1987, 726

    37. [37]

      Zhang, J.; Xu, Y.-Y.; Huang, G.-H.; Guo, H. Tetrahedron Lett. 1988, 29, 1955.  doi: 10.1016/S0040-4039(00)82088-2

    38. [38]

      Petrakis, K. S.; Nagabhushan, T. L. J. Am. Chem. Soc. 1987, 109, 2831.  doi: 10.1021/ja00243a050

    39. [39]

      Holt, D.A.; Erb, J. M. Tetrahedron Lett. 1989, 30, 5393.  doi: 10.1016/S0040-4039(01)80576-1

    40. [40]

      Xu, Y.-Y.; Wei, H.-X.; Zhang, J.; Huang, G.-H. Tetrahedron Lett. 1989, 30, 949.  doi: 10.1016/S0040-4039(00)95287-0

    41. [41]

      Bennett, S. N. L.; Hall, R. G. J. Chem. Soc., Perkin Trans. 1 1995, 1145.
       

    42. [42]

      Trost, B. M.; Radinov, R. J. Am. Chem. Soc. 1997, 119, 5962.  doi: 10.1021/ja9706864

    43. [43]

      Machnitzki, P.; Nickel, T.; Stelzer, O.; Landgrafe, C. J. Inorg. Chem. 1998, 1029.
       

    44. [44]

      Kazankova, M. A.; Trostyanskaya, I. G.; Lutsenko, S. V.; Beletskaya, I. P. Tetrahedron Lett 1999, 40, 569.  doi: 10.1016/S0040-4039(98)02358-2

    45. [45]

      Hall, R. G.; Riebli, P. Synlett 1999, 1633.
       

    46. [46]

      Zhong, P.; Xiong, Z.-X.; Huang, X. Synth. Commun. 2000, 30, 273.  doi: 10.1080/00397910008087318

    47. [47]

      Schuman, M.; Lopez, X.; Karplus, M.; Gouvemeur, V. Tetrahedron. 2001, 57, 10299.  doi: 10.1016/S0040-4020(01)01048-1

    48. [48]

      Kant, M.; Bischoff, S.; Siefken, R.; Gründemann, E.; Köckritz, A. J. Org. Chem. 2001, 477.
       

    49. [49]

      Kobayashi, Y.; William, A.; Tokoro, Y. J. Org. Chem. 2001, 66, 7903.  doi: 10.1021/jo010701u

    50. [50]

      Kim, Y.-C.; Brown, S. G.; Harden, T. K.; Boyer, J. L.; Dubyak, G.; King, B. F.; Burnstock, G.; Jacobson, K. A. J. Med. Chem. 2001, 44, 340.  doi: 10.1021/jm9904203

    51. [51]

      Cristau, H.-J.; Hervé, A.; Loiseau, F.; Virieux, D. Synthesis 2003, 2216.

    52. [52]

      Xie, J.-H.; Wang, L.-X.; Fu, Y.; Zhu, S.-F.; Fan, B.-M.; Duan, H.-F.; Zhou, Q.-L. J. Am. Chem. Soc. 2003, 125, 4404.  doi: 10.1021/ja029907i

    53. [53]

      Muthukumaran, K.; Loewe, R. S.; Ambroise, A.; Tamaru, S. I.; Li, Q.; Mathur, G.; Bocian, D. F.; Misra, V. J. Org. Chem. 2004, 69, 1444.  doi: 10.1021/jo034945l

    54. [54]

      Kobayashi, Y.; William, A. D. Adv. Synth. Catal. 2004, 346, 1749.  doi: 10.1002/adsc.200404191

    55. [55]

      Ziessel, R. F.; Charbonnière, L. J.; Mameri, S.; Camerel, F. J. Org. Chem. 2005, 70, 9835.  doi: 10.1021/jo051586g

    56. [56]

      Chauhan, S. S.; Varshney, A.; Verma, B.; Pennington, M. W. Tetrahedron 2007, 48, 4051.  doi: 10.1016/j.tetlet.2007.04.027

    57. [57]

      Bennett, J. A.; Hope, E. G.; Singh, K.; Stuart, A. M. J. Fluorine Chem. 2009, 130, 615.  doi: 10.1016/j.jfluchem.2009.04.008

    58. [58]

      Kotek, J.; Hermann, P. L. V.; Muller, R. N.; Peters, J. A. J. Mater. Chem. 2009, 19, 1494.  doi: 10.1039/b817065g

    59. [59]

      Ghalib, M.; Niaz, B.; Jones, P. G.; Heinicke, J. W. Tetrahedron Lett. 2012, 53, 5012.  doi: 10.1016/j.tetlet.2012.07.037

    60. [60]

      Rankic, D. A.; Parvez, M.; Keay, B. A. Tetrahedron: Asymmetry 2012, 23, 754.  doi: 10.1016/j.tetasy.2012.04.022

    61. [61]

      Deal, Er. L.; Petit, C.; Montchamp, J. L. Org. Lett. 2011, 13, 3270.  doi: 10.1021/ol201222n

    62. [62]

      Andaloussi, M.; Lindh, J.; Sävmarker, J.; Sjöberj, P. J. R.; Larhed, M. Chem. Eur. J. 2009, 15, 13069.  doi: 10.1002/chem.v15:47

    63. [63]

      Hou, C.-D.; Ren, Y.-L.; Lang, R.; Hu, X.-X.; Xia, C.-G.; Li, F.-W. Chem. Commun. 2012, 48, 5181.  doi: 10.1039/c2cc30429e

    64. [64]

      Mi, X.; Huang, M.-M.; Zhang, J.-Y.; Wang, C.-Y.; Wu, Y.-J. Org. Lett. 2013, 15, 6266.  doi: 10.1021/ol4031167

    65. [65]

      Feng, C.-G.; Ye, M.-C.; Xiao, K.-J.; Li, S.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 9322.  doi: 10.1021/ja404526x

    66. [66]

      Xu, W.-T.; Hu, G.-B.; Xu, P.-X.; Gao, Y.-X.; Yin, Y.-W.; Zhao, Y.-Z. Adv. Synth. Catal. 2014, 356, 2948.  doi: 10.1002/adsc.201400155

    67. [67]

      Van Allen, D.; Venkataraman, D. J. Org. Chem. 2003, 68, 4590.  doi: 10.1021/jo0343376

    68. [68]

      Huang, C.; Tang, X.; Fu, H.; Jiang, Y.-Y.; Zhao, Y.-F. J. Org. Chem. 2006, 71, 5020.  doi: 10.1021/jo060492j

    69. [69]

      Zhuang, R.-Q.; Xu, J.; Cai, Z.-S.; Tang, G.; Fang, M.-J.; Zhao, Y.-F. Org. Lett. 2011, 13, 2110.  doi: 10.1021/ol200465z

    70. [70]

      Evano, G.; Tadiparthi, K.; Couty, F. Chem. Commun. 2011, 47, 179.  doi: 10.1039/C0CC01617A

    71. [71]

      Hu, J.; Zhao, N.; Yang, B.; Wang, G.; Guo, L.-N.; Liang, Y.-M.; Yang, S.-D. Chem. Eur. J. 2011, 17, 5516.  doi: 10.1002/chem.v17.20

    72. [72]

      Hu, G.-B.; Gao, Y.-X.; Zhao, Y.-F. Org. Lett. 2014, 16, 4464.  doi: 10.1021/ol502009b

    73. [73]

      Li, L.-J.; Hao, G.-L.; Zhu, A.-L.; Fan, X.-C.; Zhang, G.-S.; Zhang, L.-H. Chem. Eur. J. 2013, 19, 14403.  doi: 10.1002/chem.v19.43

    74. [74]

      Shen, R.-W.; Luo, B.; Yang, J.-L.; Zhang, L.-X.; Han, L.-B. Chem. Commun. 2016, 52, 6451.  doi: 10.1039/C6CC02563C

    75. [75]

      Han, L.-B.; Zhang, C.; Yazawa, H.; Shimada, S. J. Am. Chem. Soc. 2004, 126, 5080.  doi: 10.1021/ja0494297

    76. [76]

      Zhang, X.-H.; Liu, H.-Z.; Hu, X.-M.; Tang, G.; Zhu, J.; Zhao, Y.-F. Org. Lett. 2011, 13, 3478.  doi: 10.1021/ol201141m

    77. [77]

      Liu, L.; Wang, Y.-L.; Zeng, Z.-P.; Xu, P.-X.; Gao, Y.-X.; Yin, Y.-W.; Zhao, Y.-F. Adv. Synth. Catal. 2013, 355, 659.  doi: 10.1002/adsc.201200853

    78. [78]

      Hu, G.-B.; Chen, W.-Z.; Fu, T.-T.; Peng, Z.-M.; Qiao, H.-W.; Gao, Y.-X.; Zhao, Y.-F. Org. Lett. 2013, 15, 5362.  doi: 10.1021/ol402672e

    79. [79]

      Wu, Y.-L.; Liu, L.; Yan, K.-L.; Xu, P.-X.; Gao, Y.-X.; Zhao, Y.-F. J. Org. Chem. 2014, 79, 8118.  doi: 10.1021/jo501321m

    80. [80]

      Yang, G.-Q.; Shen, C.-R.; Zhang, L.; Zhang, W.-B. Tetrahedron Lett. 2011, 52, 5032.  doi: 10.1016/j.tetlet.2011.07.077

    81. [81]

      Zhao, Y.-L.; Wu, G.-J.; Han, F.-S. Chem. Commun. 2012, 48, 5868.  doi: 10.1039/c2cc31718d

    82. [82]

      Yang, J.; Chen, T.-Q.; Han, L.-B. J. Am. Chem. Soc. 2015, 137, 1782.  doi: 10.1021/ja512498u

    83. [83]

      Xiang, C.-B.; Bian, Y.-J.; Mao, X.-R.; Huang, Z.-Z. J. Org. Chem. 2012, 77, 7706.  doi: 10.1021/jo301108g

    84. [84]

      Gui, Q.-W.; Hu, L.; Chen, X.; Liu, J.-D.; Tan, Z. Chem. Commun. 2015, 51, 13922.  doi: 10.1039/C5CC04826E

    85. [85]

      Huang, X.-F.; Wu, Q.-L.; He, J.-S.; Huang, Z.-Z. Org. Biomol. Chem. 2015, 13, 4466.  doi: 10.1039/C5OB00161G

    86. [86]

      Gao, Y.-Z.; Lu, G.-Z.; Zhang, P.-B.; Zhang, L.-L.; Tang, G.; Zhao, Y.-F. Org. Lett. 2016, 18, 1242.  doi: 10.1021/acs.orglett.6b00056

    87. [87]

      Xu, W.; Zou, J.-P.; Zhang, W. Tetrahedron Lett. 2010, 51, 2639.  doi: 10.1016/j.tetlet.2010.03.029

    88. [88]

      Pan, X.-Q.; Zou, J.-P.; Zhang, G.-L.; Zhang, W. Chem. Commun. 2010, 46, 1721.  doi: 10.1039/b925951a

    89. [89]

      Lera, M.; Hayes, C. J. Org. Lett. 2000, 2, 3873.  doi: 10.1021/ol0066173

    90. [90]

      Bernoud, E.; Alayrac, A.; Delacroix, O.; Gaumont, A. C. Chem. Commun. 2011, 47, 3239.  doi: 10.1039/c0cc04645k

    91. [91]

      Gao, Y.-X.; Wang, G.; Chen, L.; Xu, P.-X; Zhao, Y.-F.; Zhou, Y.-B.; Han, L.-B. J. Am. Chem. Soc. 2009, 131, 7956.  doi: 10.1021/ja9023397

    92. [92]

      Liu, P.; Yang, J.; Li, P.-H.; Wang, L. Appl. Organometal. Chem. 2011, 25, 830.  doi: 10.1002/aoc.v25.11

    93. [93]

      Qu, Z.-B.; Chen, X.-L.; Yuan, J.-W.; Qu, L.-B.; Wang, F.-J.; Ding, X.-L.; Zhao, Y.-F. Can. J. Chem. 2012, 90, 747.  doi: 10.1139/v2012-029

    94. [94]

      Liu, L.; Wu, Y.-L.; Wang, Z.-S.; Zhu, J.; Zhao, Y.-F. J. Org. Chem. 2014, 79, 6816.  doi: 10.1021/jo5007174

    95. [95]

      Yang, J.; Chen, T.-Q.; Zhou, Y.-B.; Yin, S.-F.; Han, L.-B. Chem. Commun. 2015, 51, 3549.  doi: 10.1039/C4CC09567G

    96. [96]

      Wang, T.; Chen, S.-T.; Shao, A.-L.; Gao, M.; Huang, Y.-F.; Lei, A.-W. Org. Lett. 2015, 17, 118.  doi: 10.1021/ol503341t

    97. [97]

      Li, X.; Sun, S.-Y.; Yang, F.; Kang, J.-X.; Wu, Y.-S.; Wu, Y.-J. Org. Biomol. Chem. 2015, 13, 2432.  doi: 10.1039/C4OB02410A

    98. [98]

      Li, X.; Yang, F.; Wu, Y.-J.; Wu, Y.-S. Org. Lett. 2014, 16, 992.  doi: 10.1021/ol4037242

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    4. [4]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    5. [5]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    6. [6]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    7. [7]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    8. [8]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    9. [9]

      Qun Wang Yang Li Songtao Lu Hongjun Kang Yang Hong Xiaohong Wu . Exploration for the Chemistry Innovative Talent Cultivation from an Interdisciplinary Perspective. University Chemistry, 2024, 39(8): 132-135. doi: 10.3866/PKU.DXHX202401052

    10. [10]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    11. [11]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    12. [12]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    13. [13]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    14. [14]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    15. [15]

      Luhong Chen Yan Zhang . Chem&Bio Interdisciplinary Graduates Training in Nanjing University Promoted by Chemistry and Biomedicine Innovation Center. University Chemistry, 2024, 39(6): 12-16. doi: 10.3866/PKU.DXHX202311089

    16. [16]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    17. [17]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    18. [18]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    19. [19]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    20. [20]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

Metrics
  • PDF Downloads(138)
  • Abstract views(6559)
  • HTML views(2458)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return