Citation: Dong Hao, Hou Meifang. Recent Progress in Synthesis of Amides[J]. Chinese Journal of Organic Chemistry, ;2017, 37(2): 267-283. doi: 10.6023/cjoc201608014 shu

Recent Progress in Synthesis of Amides

  • Corresponding author: Hou Meifang, mfhou@sit.edu.cn
  • Received Date: 21 August 2016
    Revised Date: 7 October 2016

    Fund Project: the National Natural Science Foundation of China 41171250

Figures(31)

  • The formation of amide bond is one of the most key reactions in organic chemistry. How to generate amide bond economically is often overlooked as a contemporary challenge as a result of the widespread occurrence of amide polymers, natural products marketed drugs as well as synthetic intermediates. There are inherent drawbacks in the methods. Concerns about their waste and expense are becoming sharper. Thus, Novel chemical protocols to amide formation are being raised. Among a large amount of ways of preparing a amide bond, there has been a growing attention in the use of catalyzed methods for preparing such important functional group. In this review, the catalyst for the formation of an amide bond has become the highlight of some the latest literature in key areas. Alcohols, aldehydes, ketones, unsaturated hydrocarbons, etc., react with organic amines or inorganic amines under a variety of conditions to give the corresponding amide. The review of a new generation of amide-forming reactions may be beneficial to solving these problems.

    1. [1]

    2. [2]

      Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 22.  doi: 10.1038/480022a

    3. [3]

      Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R. Green Chem. 2007, 9, 411.  doi: 10.1039/B703488C

    4. [4]

      Bantreil, X.; Fleith, C.; Martinez, J.; Lamaty, F. ChemCatChem 2012, 4, 1922.  doi: 10.1002/cctc.201200441

    5. [5]

      Ghosh, S. C.; Ngiam, J. S. Y.; Seayad, A. M.; Tuan, D. T.; Johannes, C. W.; Chen, A. Tetrahedron Lett. 2013, 54, 4922.  doi: 10.1016/j.tetlet.2013.07.005

    6. [6]

      Islam, S. M.; Molla, R. A.; Roy, S.; Ghosh, K. Appl. Organomet. Chem. 2014, 28, 900.  doi: 10.1002/aoc.v28.12

    7. [7]

      Hong, S. H.; Kim, K.; Kang, B. Tetrahedron 2015, 71, 4565.  doi: 10.1016/j.tet.2015.02.016

    8. [8]

      Rokade, B. V.; Gadde, K.; Prabhu, K. R. Eur. J. Org. Chem. 2015, (12), 2706.
       

    9. [9]

      Wu, Z.; Hull, K. L. Chem. Sci. 2016, 7, 969.  doi: 10.1039/C5SC03103F

    10. [10]

      Hong, G.; Wu, S. Y.; Zhu, X. Y.; Mao, D.; Wang, L. M. Tetrahedron 2016, 72, 436.  doi: 10.1016/j.tet.2015.11.063

    11. [11]

      Yoo, W. J.; Li, C. J. J. Am. Chem. Soc. 2006, 128, 13064.  doi: 10.1021/ja064315b

    12. [12]

      Bode, J. W.; Sohn, S. S. J. Am. Chem. Soc. 2007, 129, 13798.  doi: 10.1021/ja0768136

    13. [13]

      Chiang, P. C.; Kim, Y. J.; Bode, J. W. Chem. Comm. 2009, 30, 4566.
       

    14. [14]

      Leighty, M. W.; Shen, B.; Johnston, J. N. J. Am. Chem. Soc. 2012, 134, 15233.  doi: 10.1021/ja306225u

    15. [15]

      Luzzio, F. A. Tetrahedron 2001, 57, 915.  doi: 10.1016/S0040-4020(00)00965-0

    16. [16]

      Woog, M. K.; Li, G. L.; Kung, K. K. Chem. Commun. 2012, 48, 4112.  doi: 10.1039/c2cc17689k

    17. [17]

      Ambreen, N.; Wirth, T. Eur. J. Org. Chem. 2014, 34, 7590.

    18. [18]

      (a) Heffner, J. E.; Brown, L. K.; Deleo, J. M. Am. J. Respir. Crit. Care Med. 1995, 151, 1700.
      (b) Sarkar, G.; Siddiqua, S. Eng. Geol. 2016, 202, 153.

    19. [19]

      Ding, Y. Z.; Zhang, D. Y.; Zhang, X.; Chen, Y. T.; Wu, Z. B.; Wang, P. Y.; Xue, W.; Song, B. A.; Yang, S. Tetrahedron Lett. 2015, 56, 831.  doi: 10.1016/j.tetlet.2014.12.113

    20. [20]

      Lu, S. Y.; Badsara, S. S.; Wu, Y. C.; Reddy, D. M.; Lee, R. C. Tetrahedron Lett. 2016, 57, 633.  doi: 10.1016/j.tetlet.2015.12.060

    21. [21]

      Grzyb, J. B.; Batey, R. A. Tetrahedron Lett. 2003, 44, 7485.  doi: 10.1016/j.tetlet.2003.08.026

    22. [22]

      Liebeskind, L. S.; Wu, W. T.; Zhang, Z. H. J. Am. Chem. Soc. 2011, 133, 14256.  doi: 10.1021/ja2065158

    23. [23]

      Townsend, S. D.; Wu, X. Y.; Danishefsky, S. J. J. Am. Chem. Soc. 2012, 134, 10659.  doi: 10.1021/ja303876e

    24. [24]

      Vogel, P.; Zambron, B. K.; Dubbaka, S. R.; Markovic, D. Org. Lett. 2013, 15, 2550.  doi: 10.1021/ol401053y

    25. [25]

      Lipshutz, B. H.; Gabriel, C. M.; Keener, M.; Callou, F. Org. Lett. 2015, 17, 3968.  doi: 10.1021/acs.orglett.5b01812

    26. [26]

      Thiemann, T.; Jasem, Y. A.; Soom, N. A. C. R. Chimie 2016, 1.

    27. [27]

      Kawahata, N. H.; Brookes, J.; Makara, G. M. Tetrahedron Lett. 2002, 43, 7221.  doi: 10.1016/S0040-4039(02)01657-X

    28. [28]

      Hosmane, R. S.; Ujjinamatada, R. K. Tetrahedron Lett. 2005, 46, 6005.  doi: 10.1016/j.tetlet.2005.07.024

    29. [29]

      An, D. K.; Jeon, A. R.; Kim, M. E.; Park, J. K.; Shin, W. K. Tetrahedron 2014, 70, 4420.  doi: 10.1016/j.tet.2014.03.045

    30. [30]

      Mecinovic, J.; Lenstra, D. C.; Nguyen, D. T. Tetrahedron 2015, 71, 5547.  doi: 10.1016/j.tet.2015.06.066

    31. [31]

      Wang, Q. W.; Yang, Y.; Fu, R. Z.; Ma, Y. S.; Yang, F.; Li, J. J.; Chai, W.; Yuan, R. X. Tetrahedron Lett. 2015, 56, 4527.  doi: 10.1016/j.tetlet.2015.05.118

    32. [32]

      Du, G. F.; Guo, H.; Wang, Y.; Dai, B. U.; He, L. Tetrahedron 2015, 71, 3472.  doi: 10.1016/j.tet.2015.03.071

    33. [33]

      Mizuno, N.; Yamaguchi, K.; Matsushita, M. Angew. Chem., Int. Ed. 2004, 43, 1576.  doi: 10.1002/(ISSN)1521-3773

    34. [34]

      Varma, R. S.; Polshettimar, V. Chem. Eur. J. 2009, 15, 1582.  doi: 10.1002/chem.v15:7

    35. [35]

      Kim, A. Y.; Bae, H. S.; Park, S. H; Park, S. K.; Park, R. H. Catal. Lett. 2011, 141, 685.  doi: 10.1007/s10562-011-0561-y

    36. [36]

      Shimizu, K. Z.; Imaiida, N.; Sawabe, K.; Satsuma. A. Appl. Catal., A 2012, 421~422, 114.
       

    37. [37]

      Tyler, D. R.; Knapp, S. M. M.; Sherbow, T. J.; Yelle, R. B.; Juliette, J. Organometallics 2013, 32, 3744.  doi: 10.1021/om400380j

    38. [38]

      Qu, J. P.; Tong, P.; Yang, D. W.; Li, Y.; Wang, B. W. Organometallics 2015, 34, 3571.  doi: 10.1021/acs.organomet.5b00387

    39. [39]

      Jin, J. Y.; Etzion, R.; Santoso, B.; Yanaranop, P. Polymer 2016, 98, 244.  doi: 10.1016/j.polymer.2016.06.041

    40. [40]

      Alper, H.; Larksarp, C. J. Org. Chem. 2000, 65, 2773.  doi: 10.1021/jo991922r

    41. [41]

      Inoue, Y.; Tsukada, N.; Ohba, Y. J. Org. Chem. 2003, 687, 436.  doi: 10.1016/j.jorganchem.2003.08.014

    42. [42]

      Li, Z.; Ding, R. B.; Lu, Z.; Xiao, S. X.; Ma, X. L. J. Mol. Catal. A: Chem. 2006, 250, 100.  doi: 10.1016/j.molcata.2006.01.056

    43. [43]

      Crabtree, R. H.; Hull, J. F.; Hilton, S. T. Inorg. Chim. Acta 2010, 363, 1243.  doi: 10.1016/j.ica.2009.08.022

    44. [44]

    45. [45]

      Deng, Y. Q.; Yin, S. F.; Au, C. T. lnd. Eng. Chem. Res. 2012, 51, 9492.  doi: 10.1021/ie3001277

    46. [46]

      Maronna, M. M.; Kruissink, E. C.; Tinge, J. T.; Agar, D. W.; Hoelderich, W. F. Ind. Eng. Chem. Res. 2016, 55, 1202.  doi: 10.1021/acs.iecr.5b04240

    47. [47]

      Shin, Y. Y.; Jung, D. J.; Lee, S. G. Catal. 2013, 3, 525.

    48. [48]

      Mahajan, P. S.; Humne, V. T.; Tanpure, S. D.; Mhaske, S. B. Org. Lett. 2016, 18, 3450.  doi: 10.1021/acs.orglett.6b01634

    49. [49]

      Zhang, F.-L.; Wang, Y.-F.; Lonca, G. H.; Zhu, X.; Chiba, S. An-gew. Chem., Int. Ed. 2014, 53, 4390.  doi: 10.1002/anie.201400938

    50. [50]

      Zhu, X.; Wang, Y.-F.; Zhang, F.-L.; Chiba, S. Chem. Asian J. 2014, 9, 2458.  doi: 10.1002/asia.201402421

    51. [51]

      Zhang, F. L.; Zhu, X.; Chiba, S. Org. Lett. 2015, 17, 3138.  doi: 10.1021/acs.orglett.5b01458

    52. [52]

      Howell, A. R.; Chen, D. Tetrahedron Lett. 2015, 56, 3583.  doi: 10.1016/j.tetlet.2015.02.133

    53. [53]

      Lüdtke, D. S.; Silva, L.; Affeldt, R. F. J. Org. Chem. 2016, 81, 5464.  doi: 10.1021/acs.joc.6b00832

    54. [54]

      Babu, V. V. S.; Vasant, G-R.; Tantry, S. J. Tetrahedron Lett. 2005, 46, 4099.  doi: 10.1016/j.tetlet.2005.04.007

    55. [55]

      Li, Z. F.; Lai, G. Q.; Chen, W. F.; Li, K. B.; Hu, Z. Q.; Wang, L. L. Organometallics 2011, 30, 2026.  doi: 10.1021/om200080f

    56. [56]

      Liguori, A.; Siciliano, C.; Leggio, A.; Belsito, E. L.; Di, M. L.; Leotta, G. V.; Romio, E. Tetrahedron Lett. 2015, 56, 199.  doi: 10.1016/j.tetlet.2014.11.067

    57. [57]

      Gooßen, L. J.; Rauhaus, J. E.; Deng, G. Angew, Chem, Int. Ed. 2005, 44, 4042.  doi: 10.1002/(ISSN)1521-3773

    58. [58]

      Chang, S.; Kim, S. K.; Do, Y.; Lee, J.; Jung, D. Y.; Ahn, D.-S.; Lee, J. M. J. Am. Chem. Soc. 2006, 128, 12954.  doi: 10.1021/ja0639315

    59. [59]

      Takai, K.; Kuninobu, Y.; Salprima, Y. S. Org. Lett. 2007, 9, 5609.  doi: 10.1021/ol702564e

    60. [60]

      Beller, M.; Fang, X. J.; Jackstell, R. Angew, Chem., Int. Ed. 2013, 52, 14089.  doi: 10.1002/anie.201308455

    61. [61]

      Stephenson, N. A.; Zhu, J.; Gellman, S. H.; Stahl, S. S. J. Am. Chem. Soc. 2009, 131, 10003.  doi: 10.1021/ja8094262

    62. [62]

      Srinivas, M.; Hudwekar, A. D.; Venkateswalu, V.; Reddy, G. L. Tetrahedron Lett. 2015, 56, 4775.  doi: 10.1016/j.tetlet.2015.06.052

    63. [63]

      Janousek, Z.; Collard, J.; Viehe, H. G. Angew. Chem., Int. Ed. Engl. 1972, 11, 917.  doi: 10.1002/(ISSN)1521-3773

    64. [64]

      Jin, X. J.; Ka, Z. Y.; Mizuno, N. Chem. Lett. 2012, 41, 866.  doi: 10.1246/cl.2012.866

    65. [65]

      Xu, S. X.; Liu, J. Q.; Hu, D. H.; Bi, X. H. Green Chem. 2015, 17, 184.  doi: 10.1039/C4GC01328J

    66. [66]

      Huang, H.; Tang, L. N.; Xi, Y.; He, G. K.; Zhu, H. J. Tetrahedron Lett. 2016, 57, 1873.  doi: 10.1016/j.tetlet.2016.03.052

    67. [67]

      Ohmura, R.; Takahata, M.; Togo, H. Tetrahedron Lett. 2010, 51, 4378.  doi: 10.1016/j.tetlet.2010.06.051

    68. [68]

      Yamaguchi, K.; Kobayashi, H.; Oishi, T.; Mizuno, N. Angew. Chem. 2012, 124, 559.  doi: 10.1002/ange.201107110

    69. [69]

      Wu, A.; Cao, L.; Ding, J.; Gao, M.; Wang, Z.; Li, J. Org. Lett. 2009, 11, 3810.  doi: 10.1021/ol901250c

    70. [70]

      Peng, Y. Q.; Song, G. H. Org. Prep. Proced. Int. 2002, 34, 95.  doi: 10.1080/00304940209355747

    71. [71]

      Ahmed, M.; Baburajan, P.; Sureshm, A. S. Tetrahedron Lett. 2015, 56, 4864.  doi: 10.1016/j.tetlet.2015.06.054

    72. [72]

      Wang, Y.; Yamaguchi, K.; Mizuno, N. Angew. Chem., Int. Ed. 2012, 51, 7250.  doi: 10.1002/anie.201203098

    73. [73]

      Wang, T.; Yuan, L.; Zhao, Z.; Shao, A.; Gao, M.; Huang, Y.; Xiong, F.; Zhang, H.; Zhao, J. Green Chem. 2015, 17, 2741.  doi: 10.1039/C5GC00299K

    74. [74]

      Zhao, J.; Zhao, Z.; Wang, T.; Yuan, L.; Hu, X.; Xiong, F. Adv. Synth. Catal. 2015, 357, 2566.  doi: 10.1002/adsc.201500310

    75. [75]

      Griffin, J. M.; Atherton, J. H.; Page, M. I.; Powles, N. T. J. Phys. Org. Chem. 2016, 29, 768.  doi: 10.1002/poc.v29.12

    76. [76]

      Batra, S.; Dighe, S. U. Adv. Synth. Catal. 2016, 358, 500.  doi: 10.1002/adsc.201500906

    1. [1]

    2. [2]

      Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 22.  doi: 10.1038/480022a

    3. [3]

      Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R. Green Chem. 2007, 9, 411.  doi: 10.1039/B703488C

    4. [4]

      Bantreil, X.; Fleith, C.; Martinez, J.; Lamaty, F. ChemCatChem 2012, 4, 1922.  doi: 10.1002/cctc.201200441

    5. [5]

      Ghosh, S. C.; Ngiam, J. S. Y.; Seayad, A. M.; Tuan, D. T.; Johannes, C. W.; Chen, A. Tetrahedron Lett. 2013, 54, 4922.  doi: 10.1016/j.tetlet.2013.07.005

    6. [6]

      Islam, S. M.; Molla, R. A.; Roy, S.; Ghosh, K. Appl. Organomet. Chem. 2014, 28, 900.  doi: 10.1002/aoc.v28.12

    7. [7]

      Hong, S. H.; Kim, K.; Kang, B. Tetrahedron 2015, 71, 4565.  doi: 10.1016/j.tet.2015.02.016

    8. [8]

      Rokade, B. V.; Gadde, K.; Prabhu, K. R. Eur. J. Org. Chem. 2015, (12), 2706.
       

    9. [9]

      Wu, Z.; Hull, K. L. Chem. Sci. 2016, 7, 969.  doi: 10.1039/C5SC03103F

    10. [10]

      Hong, G.; Wu, S. Y.; Zhu, X. Y.; Mao, D.; Wang, L. M. Tetrahedron 2016, 72, 436.  doi: 10.1016/j.tet.2015.11.063

    11. [11]

      Yoo, W. J.; Li, C. J. J. Am. Chem. Soc. 2006, 128, 13064.  doi: 10.1021/ja064315b

    12. [12]

      Bode, J. W.; Sohn, S. S. J. Am. Chem. Soc. 2007, 129, 13798.  doi: 10.1021/ja0768136

    13. [13]

      Chiang, P. C.; Kim, Y. J.; Bode, J. W. Chem. Comm. 2009, 30, 4566.
       

    14. [14]

      Leighty, M. W.; Shen, B.; Johnston, J. N. J. Am. Chem. Soc. 2012, 134, 15233.  doi: 10.1021/ja306225u

    15. [15]

      Luzzio, F. A. Tetrahedron 2001, 57, 915.  doi: 10.1016/S0040-4020(00)00965-0

    16. [16]

      Woog, M. K.; Li, G. L.; Kung, K. K. Chem. Commun. 2012, 48, 4112.  doi: 10.1039/c2cc17689k

    17. [17]

      Ambreen, N.; Wirth, T. Eur. J. Org. Chem. 2014, 34, 7590.

    18. [18]

      (a) Heffner, J. E.; Brown, L. K.; Deleo, J. M. Am. J. Respir. Crit. Care Med. 1995, 151, 1700.
      (b) Sarkar, G.; Siddiqua, S. Eng. Geol. 2016, 202, 153.

    19. [19]

      Ding, Y. Z.; Zhang, D. Y.; Zhang, X.; Chen, Y. T.; Wu, Z. B.; Wang, P. Y.; Xue, W.; Song, B. A.; Yang, S. Tetrahedron Lett. 2015, 56, 831.  doi: 10.1016/j.tetlet.2014.12.113

    20. [20]

      Lu, S. Y.; Badsara, S. S.; Wu, Y. C.; Reddy, D. M.; Lee, R. C. Tetrahedron Lett. 2016, 57, 633.  doi: 10.1016/j.tetlet.2015.12.060

    21. [21]

      Grzyb, J. B.; Batey, R. A. Tetrahedron Lett. 2003, 44, 7485.  doi: 10.1016/j.tetlet.2003.08.026

    22. [22]

      Liebeskind, L. S.; Wu, W. T.; Zhang, Z. H. J. Am. Chem. Soc. 2011, 133, 14256.  doi: 10.1021/ja2065158

    23. [23]

      Townsend, S. D.; Wu, X. Y.; Danishefsky, S. J. J. Am. Chem. Soc. 2012, 134, 10659.  doi: 10.1021/ja303876e

    24. [24]

      Vogel, P.; Zambron, B. K.; Dubbaka, S. R.; Markovic, D. Org. Lett. 2013, 15, 2550.  doi: 10.1021/ol401053y

    25. [25]

      Lipshutz, B. H.; Gabriel, C. M.; Keener, M.; Callou, F. Org. Lett. 2015, 17, 3968.  doi: 10.1021/acs.orglett.5b01812

    26. [26]

      Thiemann, T.; Jasem, Y. A.; Soom, N. A. C. R. Chimie 2016, 1.

    27. [27]

      Kawahata, N. H.; Brookes, J.; Makara, G. M. Tetrahedron Lett. 2002, 43, 7221.  doi: 10.1016/S0040-4039(02)01657-X

    28. [28]

      Hosmane, R. S.; Ujjinamatada, R. K. Tetrahedron Lett. 2005, 46, 6005.  doi: 10.1016/j.tetlet.2005.07.024

    29. [29]

      An, D. K.; Jeon, A. R.; Kim, M. E.; Park, J. K.; Shin, W. K. Tetrahedron 2014, 70, 4420.  doi: 10.1016/j.tet.2014.03.045

    30. [30]

      Mecinovic, J.; Lenstra, D. C.; Nguyen, D. T. Tetrahedron 2015, 71, 5547.  doi: 10.1016/j.tet.2015.06.066

    31. [31]

      Wang, Q. W.; Yang, Y.; Fu, R. Z.; Ma, Y. S.; Yang, F.; Li, J. J.; Chai, W.; Yuan, R. X. Tetrahedron Lett. 2015, 56, 4527.  doi: 10.1016/j.tetlet.2015.05.118

    32. [32]

      Du, G. F.; Guo, H.; Wang, Y.; Dai, B. U.; He, L. Tetrahedron 2015, 71, 3472.  doi: 10.1016/j.tet.2015.03.071

    33. [33]

      Mizuno, N.; Yamaguchi, K.; Matsushita, M. Angew. Chem., Int. Ed. 2004, 43, 1576.  doi: 10.1002/(ISSN)1521-3773

    34. [34]

      Varma, R. S.; Polshettimar, V. Chem. Eur. J. 2009, 15, 1582.  doi: 10.1002/chem.v15:7

    35. [35]

      Kim, A. Y.; Bae, H. S.; Park, S. H; Park, S. K.; Park, R. H. Catal. Lett. 2011, 141, 685.  doi: 10.1007/s10562-011-0561-y

    36. [36]

      Shimizu, K. Z.; Imaiida, N.; Sawabe, K.; Satsuma. A. Appl. Catal., A 2012, 421~422, 114.
       

    37. [37]

      Tyler, D. R.; Knapp, S. M. M.; Sherbow, T. J.; Yelle, R. B.; Juliette, J. Organometallics 2013, 32, 3744.  doi: 10.1021/om400380j

    38. [38]

      Qu, J. P.; Tong, P.; Yang, D. W.; Li, Y.; Wang, B. W. Organometallics 2015, 34, 3571.  doi: 10.1021/acs.organomet.5b00387

    39. [39]

      Jin, J. Y.; Etzion, R.; Santoso, B.; Yanaranop, P. Polymer 2016, 98, 244.  doi: 10.1016/j.polymer.2016.06.041

    40. [40]

      Alper, H.; Larksarp, C. J. Org. Chem. 2000, 65, 2773.  doi: 10.1021/jo991922r

    41. [41]

      Inoue, Y.; Tsukada, N.; Ohba, Y. J. Org. Chem. 2003, 687, 436.  doi: 10.1016/j.jorganchem.2003.08.014

    42. [42]

      Li, Z.; Ding, R. B.; Lu, Z.; Xiao, S. X.; Ma, X. L. J. Mol. Catal. A: Chem. 2006, 250, 100.  doi: 10.1016/j.molcata.2006.01.056

    43. [43]

      Crabtree, R. H.; Hull, J. F.; Hilton, S. T. Inorg. Chim. Acta 2010, 363, 1243.  doi: 10.1016/j.ica.2009.08.022

    44. [44]

    45. [45]

      Deng, Y. Q.; Yin, S. F.; Au, C. T. lnd. Eng. Chem. Res. 2012, 51, 9492.  doi: 10.1021/ie3001277

    46. [46]

      Maronna, M. M.; Kruissink, E. C.; Tinge, J. T.; Agar, D. W.; Hoelderich, W. F. Ind. Eng. Chem. Res. 2016, 55, 1202.  doi: 10.1021/acs.iecr.5b04240

    47. [47]

      Shin, Y. Y.; Jung, D. J.; Lee, S. G. Catal. 2013, 3, 525.

    48. [48]

      Mahajan, P. S.; Humne, V. T.; Tanpure, S. D.; Mhaske, S. B. Org. Lett. 2016, 18, 3450.  doi: 10.1021/acs.orglett.6b01634

    49. [49]

      Zhang, F.-L.; Wang, Y.-F.; Lonca, G. H.; Zhu, X.; Chiba, S. An-gew. Chem., Int. Ed. 2014, 53, 4390.  doi: 10.1002/anie.201400938

    50. [50]

      Zhu, X.; Wang, Y.-F.; Zhang, F.-L.; Chiba, S. Chem. Asian J. 2014, 9, 2458.  doi: 10.1002/asia.201402421

    51. [51]

      Zhang, F. L.; Zhu, X.; Chiba, S. Org. Lett. 2015, 17, 3138.  doi: 10.1021/acs.orglett.5b01458

    52. [52]

      Howell, A. R.; Chen, D. Tetrahedron Lett. 2015, 56, 3583.  doi: 10.1016/j.tetlet.2015.02.133

    53. [53]

      Lüdtke, D. S.; Silva, L.; Affeldt, R. F. J. Org. Chem. 2016, 81, 5464.  doi: 10.1021/acs.joc.6b00832

    54. [54]

      Babu, V. V. S.; Vasant, G-R.; Tantry, S. J. Tetrahedron Lett. 2005, 46, 4099.  doi: 10.1016/j.tetlet.2005.04.007

    55. [55]

      Li, Z. F.; Lai, G. Q.; Chen, W. F.; Li, K. B.; Hu, Z. Q.; Wang, L. L. Organometallics 2011, 30, 2026.  doi: 10.1021/om200080f

    56. [56]

      Liguori, A.; Siciliano, C.; Leggio, A.; Belsito, E. L.; Di, M. L.; Leotta, G. V.; Romio, E. Tetrahedron Lett. 2015, 56, 199.  doi: 10.1016/j.tetlet.2014.11.067

    57. [57]

      Gooßen, L. J.; Rauhaus, J. E.; Deng, G. Angew, Chem, Int. Ed. 2005, 44, 4042.  doi: 10.1002/(ISSN)1521-3773

    58. [58]

      Chang, S.; Kim, S. K.; Do, Y.; Lee, J.; Jung, D. Y.; Ahn, D.-S.; Lee, J. M. J. Am. Chem. Soc. 2006, 128, 12954.  doi: 10.1021/ja0639315

    59. [59]

      Takai, K.; Kuninobu, Y.; Salprima, Y. S. Org. Lett. 2007, 9, 5609.  doi: 10.1021/ol702564e

    60. [60]

      Beller, M.; Fang, X. J.; Jackstell, R. Angew, Chem., Int. Ed. 2013, 52, 14089.  doi: 10.1002/anie.201308455

    61. [61]

      Stephenson, N. A.; Zhu, J.; Gellman, S. H.; Stahl, S. S. J. Am. Chem. Soc. 2009, 131, 10003.  doi: 10.1021/ja8094262

    62. [62]

      Srinivas, M.; Hudwekar, A. D.; Venkateswalu, V.; Reddy, G. L. Tetrahedron Lett. 2015, 56, 4775.  doi: 10.1016/j.tetlet.2015.06.052

    63. [63]

      Janousek, Z.; Collard, J.; Viehe, H. G. Angew. Chem., Int. Ed. Engl. 1972, 11, 917.  doi: 10.1002/(ISSN)1521-3773

    64. [64]

      Jin, X. J.; Ka, Z. Y.; Mizuno, N. Chem. Lett. 2012, 41, 866.  doi: 10.1246/cl.2012.866

    65. [65]

      Xu, S. X.; Liu, J. Q.; Hu, D. H.; Bi, X. H. Green Chem. 2015, 17, 184.  doi: 10.1039/C4GC01328J

    66. [66]

      Huang, H.; Tang, L. N.; Xi, Y.; He, G. K.; Zhu, H. J. Tetrahedron Lett. 2016, 57, 1873.  doi: 10.1016/j.tetlet.2016.03.052

    67. [67]

      Ohmura, R.; Takahata, M.; Togo, H. Tetrahedron Lett. 2010, 51, 4378.  doi: 10.1016/j.tetlet.2010.06.051

    68. [68]

      Yamaguchi, K.; Kobayashi, H.; Oishi, T.; Mizuno, N. Angew. Chem. 2012, 124, 559.  doi: 10.1002/ange.201107110

    69. [69]

      Wu, A.; Cao, L.; Ding, J.; Gao, M.; Wang, Z.; Li, J. Org. Lett. 2009, 11, 3810.  doi: 10.1021/ol901250c

    70. [70]

      Peng, Y. Q.; Song, G. H. Org. Prep. Proced. Int. 2002, 34, 95.  doi: 10.1080/00304940209355747

    71. [71]

      Ahmed, M.; Baburajan, P.; Sureshm, A. S. Tetrahedron Lett. 2015, 56, 4864.  doi: 10.1016/j.tetlet.2015.06.054

    72. [72]

      Wang, Y.; Yamaguchi, K.; Mizuno, N. Angew. Chem., Int. Ed. 2012, 51, 7250.  doi: 10.1002/anie.201203098

    73. [73]

      Wang, T.; Yuan, L.; Zhao, Z.; Shao, A.; Gao, M.; Huang, Y.; Xiong, F.; Zhang, H.; Zhao, J. Green Chem. 2015, 17, 2741.  doi: 10.1039/C5GC00299K

    74. [74]

      Zhao, J.; Zhao, Z.; Wang, T.; Yuan, L.; Hu, X.; Xiong, F. Adv. Synth. Catal. 2015, 357, 2566.  doi: 10.1002/adsc.201500310

    75. [75]

      Griffin, J. M.; Atherton, J. H.; Page, M. I.; Powles, N. T. J. Phys. Org. Chem. 2016, 29, 768.  doi: 10.1002/poc.v29.12

    76. [76]

      Batra, S.; Dighe, S. U. Adv. Synth. Catal. 2016, 358, 500.  doi: 10.1002/adsc.201500906

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    5. [5]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    8. [8]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    9. [9]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    10. [10]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    14. [14]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    15. [15]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    18. [18]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    19. [19]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    20. [20]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

Metrics
  • PDF Downloads(722)
  • Abstract views(19401)
  • HTML views(7446)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return