Citation: Wang Hui, Zheng Yi, Pan Zhentao, Fu Hongliang, Ling Fei, Zhong Weihui. Progress of Frustrated Lewis Pairs in Catalytic Hydrogenation[J]. Chinese Journal of Organic Chemistry, ;2017, 37(2): 301-313. doi: 10.6023/cjoc201607046 shu

Progress of Frustrated Lewis Pairs in Catalytic Hydrogenation

  • Corresponding author: Zhong Weihui, weihuizhong@zjut.edu.cn
  • Received Date: 30 July 2016
    Revised Date: 19 September 2016

    Fund Project: the National Natural Science Foundation of China 21276238the National Natural Science Foundation of China 21676253

Figures(26)

  • Frustrated Lewis pairs (FLPs) catalyzed hydrogenation reaction is one of the hotspots in the current hydrogenation field. This kind of reaction has the advantages of environment friendly, no metal residue, etc., and has a potential prospect for industrial application. According to the category of the substrate, a brief review of the recent progress in the field of the FLPs-catalyzed hydrogenation as well as the asymmetric hydrogenation is depicted.
  • 加载中
    1. [1]

      Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D. W. Science 2006, 314, 1124.  doi: 10.1126/science.1134230

    2. [2]

      Spies, P.; Erker, G.; Kehr, G.; Bergander, K.; Fröhlich, R.; Grimme, S.; Stephan, D.W. Chem. Commun. 2007, 5072.
       

    3. [3]

      Sumerin, V.; Schulz, F.; Nieger, M.; Leskelä, M.; Repo, T.; Rieger, B. Angew. Chem. Int. Ed. 2008, 47, 6001.  doi: 10.1002/anie.200800935

    4. [4]

      Holschumacher, D.; Bannenberg, T.; Hrib, C. G.; Jones, P. G.; Tamm, M. Angew. Chem. Int. Ed. 2008, 47, 7428.  doi: 10.1002/anie.v47:39

    5. [5]

      Lu, Z.-P.; Cheng, Z.-H.; Chen, Z.-X.; Weng, L.-H.; Li, Z.-H.; Wang, H.-D. Angew. Chem., Int. Ed. 2011, 50, 12227.  doi: 10.1002/anie.v50.51

    6. [6]

      Zaher, H.; Ashley, A. E.; Irwin, M.; Thompson, A. L.; Gutmann, M. J.; Krämer, T.; O'Hare, D. Chem. Commun., 2013, 49, 9755.  doi: 10.1039/c3cc45889j

    7. [7]

      Caputo, C. B.; Zhu, K.-L.; Vukotic, V. N.; Loeb, S. J.; Stephan, D. W. Angew. Chem. Int. Ed. 2013, 52, 960.  doi: 10.1002/anie.201207783

    8. [8]

      Chernichenko, K.; Kótai, B.; Pápai, I.; Zhivonitko, V.; Nieger, M.; Leskelä, M.; Repo; T. Angew. Chem., Int. Ed. 2015, 54, 1749.  doi: 10.1002/anie.201410141

    9. [9]

      Samigullin, K.; Georg, I.; Bolte, M.; Lerner, H. W.; Wagner, M. Chem. Eur. J. 2016, 22, 3478.  doi: 10.1002/chem.v22.10

    10. [10]

      Zheng, J.-H.; Lin, Y.-J.; Wang, H.-D. Dalton Trans. 2016, 45, 6088.  doi: 10.1039/C5DT03815D

    11. [11]

      Mo, Z.-B.; Rit, A.; Campos, J.; Kolychev, E. L.; Aldridge, S. J. Am. Chem. Soc. 2016, 138, 3306.  doi: 10.1021/jacs.6b01170

    12. [12]

      Wang, P.-A.; Sun, X.-L.; Gao, P. Chin. J. Org. Chem. 2011, 31, 1369 (in Chinese).
       

    13. [13]

      Xu, Y.-Y.; Li, Z.; Maxim B.; Nie, W.-L. Prog. Chem. 2012, 24, 1526 (in Chinese).
       

    14. [14]

      Chase, P. A.; Welch, G. C.; Jurca, T.; Stephan, D. W. Angew. Chem., Int. Ed. 2007, 46, 8050.  doi: 10.1002/(ISSN)1521-3773

    15. [15]

      Chase, P. A.; Jurca, T.; Stephan, D. W. Chem. Commun. 2008, 1701.
       

    16. [16]

      Mohr, J.; Oestreich, M. Angew. Chem., Int. Ed. 2014, 53, 13278.  doi: 10.1002/anie.201407324

    17. [17]

      Wei, S.-M.; Feng, X.-Q.; Du, H.-F. Org. Biomol. Chem. 2016, 14, 8026.  doi: 10.1039/C6OB01556E

    18. [18]

      Farrell, J. M.; Heiden, Z. M.; Stephan, D. W. Organometallics 2011, 30, 4497.  doi: 10.1021/om2005832

    19. [19]

      Chatterjee, I.; Oestreich, M. Angew. Chem., Int. Ed. 2015, 54, 1965.  doi: 10.1002/anie.201409246

    20. [20]

      Jiang, C.-F.; Blacque, O.; Berke, H. Chem. Commun. 2009, 5518.
       

    21. [21]

      Scott, D. J.; Fuchter, M. J.; Ashley, A. E. Angew. Chem., Int. Ed. 2014, 53, 10218.  doi: 10.1002/anie.201405531

    22. [22]

      Spies, P.; Schwendemann, S.; Lange, S.; Kehr, G.; Fröhlich, R.; Erker, G. Angew. Chem., Int. Ed. 2008, 47, 7543.  doi: 10.1002/anie.v47:39

    23. [23]

      Wang, G.; Chen, C.; Du, T.-Y.; Zhong, W.-H. Adv. Synth. Catal. 2014, 356, 1747.  doi: 10.1002/adsc.201301007

    24. [24]

      (a) Sumerin, V.; Chernichenko, K.; Nieger, M.; Leskelä, M.; Rieger, B.; Repo, T. Adv. Synth. Catal. 2011, 353, 2093.
      (b) Chernichenko, K.; Nieger, M.; Leskelä, M.; Repo, T. Dalton Trans. 2012, 41, 9029.
      (c) Sumerin, V.; Schulz, F.; Atsumi, M.; Wang, C.; Nieger, M.; Leskelä, M.; Repo, T.; Pyykkö, P.; Rieger, B. J. Am. Chem. Soc. 2008, 130, 14117.

    25. [25]

      Farrell, J. M.; Posaratnanathan, R. T.; Stephan, D. W. Chem. Sci. 2015, 6, 2010.  doi: 10.1039/C4SC03675A

    26. [26]

      Mummadi, S.; Unruh, D. K.; Zhao, J.-Y.; Li, S.-H.; Krempner, C. J. Am. Chem. Soc. 2016, 138, 3286.  doi: 10.1021/jacs.5b13545

    27. [27]

      Schwendemann, S.; Frölich, R.; Kehr, G.; Erker, G. Chem. Sci. 2011, 2, 1842.  doi: 10.1039/c1sc00124h

    28. [28]

      (a) Parks, D. J.; Spence, R. E. v. H.; Piers, W. E. Angew. Chem., Int. Ed. Engl. 1995, 34, 809.
      (b) Parks, D. J.; Piers, W. E.; Yap, G. P. A. Organometallics 1998, 17, 5492.

    29. [29]

      Wang, H.-D.; Fröhlich, R.; Kehr, G.; Erker, G. Chem. Commun. 2008, 5966.
       

    30. [30]

      Greb, L.; Oña-Burgos, P.; Schirmer, B.; Grimme, S.; Stephan, D. W.; Paradies, J. Angew. Chem., Int. Ed. 2012, 51, 10164.  doi: 10.1002/anie.201204007

    31. [31]

      Erõs, G.; Mehdi, H.; Pápai, I.; Rokob, T. A.; Király, P.; Tárkányi, G.; Soós, T. Angew. Chem., Int. Ed. 2010, 49, 6559.  doi: 10.1002/anie.201001518

    32. [32]

      Inés, B.; Palomas, D.; Holle, S.; Steinberg, S.; Nicasio, J. A.; Alcarazo, M. Angew. Chem., Int. Ed. 2012, 51, 12367.  doi: 10.1002/anie.v51.49

    33. [33]

      (a) Greb, L.; Daniliuc, C. G.; Bergander, K.; Paradies, J. Angew. Chem., Int. Ed. 2013, 52, 5876.
      (b) Paradies, J. Angew. Chem., Int. Ed. 2014, 53, 3552.

    34. [34]

      Hounjet, L. J.; Bannwarth, C.; Garon, C. N.; Caputo, C. B.; Grimme, S.; Stephan, D. W. Angew. Chem., Int. Ed. 2013, 52, 7492.  doi: 10.1002/anie.201303166

    35. [35]

      Wang, X.-W.; Kehr, G.; Daniliuc, C. G.; Erker, G. J. Am. Chem. Soc. 2014, 136, 3293.  doi: 10.1021/ja413060u

    36. [36]

      Chernichenko, K.; Madarász, Á.; Pápai, I.; Nieger, M.; Leskelä, M.; Repo, T. Nat. Chem. 2013, 5, 718.  doi: 10.1038/nchem.1693

    37. [37]

      Szeto, K. C.; Sahyoun, W.; Merle, N.; Castelbou, J. L.; Popoff, N.; Lefebvre, F.; Raynaud, J.; Godard, C.; Claver, C.; Delevoye, L.; Gauvinc, R. M.; Taoufik, M. Catal. Sci. Technol. 2016, 6, 882.  doi: 10.1039/C5CY01372K

    38. [38]

      Reddy, J. S.; Xu, B.-H.; Mahdi, T.; Fröhlich, R.; Kehr, G.; Stephan, D. W.; Erker, G. Organometallics 2012, 31, 5638.  doi: 10.1021/om3006068

    39. [39]

      Greb, L.; Oña-Burgos, P.; Kubas, A.; Falk, F. C.; Breher, F.; Finkc, K.; Paradies, J. Dalton Trans. 2012, 41, 9056.  doi: 10.1039/c2dt30374d

    40. [40]

      Longobardi, L. E.; Tang, C.; Stephan, D. W. Dalton Trans. 2014, 43, 15723.  doi: 10.1039/C4DT02648A

    41. [41]

      Mahdi, T.; Stephan, D. W. J. Am. Chem. Soc. 2014, 136, 15809.  doi: 10.1021/ja508829x

    42. [42]

      Scott, D. J.; Fuchter, M. J.; Ashley, A. E. J. Am. Chem. Soc. 2014, 136, 15813.  doi: 10.1021/ja5088979

    43. [43]

      Mahdi, T.; Stephan, D. W. Angew. Chem., Int. Ed. 2015, 54, 8511.  doi: 10.1002/anie.201503087

    44. [44]

      Gyömöre, Á.; Bakos, M.; Földes, T.; Pápai, I.; Domján, A.; Soós, T. ACS Catal. 2015, 5, 5366.  doi: 10.1021/acscatal.5b01299

    45. [45]

      Geier, S. J.; Chase, P. A.; Stephan, D. W. Chem. Commun. 2010, 46, 4884.  doi: 10.1039/c0cc00719f

    46. [46]

      Erös, G.; Nagy, K.; Mehdi, H.; Pápai, I.; Nagy, P.; Király, P.; Tárkányi, G.; Soós, T. Chem. Eur. J. 2012, 18, 574.  doi: 10.1002/chem.v18.2

    47. [47]

      Chen, B.-L.; Wang, B.; Lin, G.-Q. J. Org. Chem. 2010, 75, 941.  doi: 10.1021/jo902424m

    48. [48]

      Segawa, Y.; Stephan, D. W. Chem. Commun. 2012, 48, 11963.  doi: 10.1039/c2cc37190a

    49. [49]

      Mahdi, T.; Heiden, Z. M.; Grimme, S.; Stephan, D. W. J. Am. Chem. Soc. 2012, 134, 4088.  doi: 10.1021/ja300228a

    50. [50]

      Longobardi, L. E.; Mahdi, T.; Stephan, D. W. Dalton Trans. 2015, 44, 7114.  doi: 10.1039/C5DT00921A

    51. [51]

      Mahdi, T.; Castillo, J. N. D.; Stephan, D. W. Organometallics 2013, 32, 1971.  doi: 10.1021/om4000727

    52. [52]

      Liu, Y.-B.; Du, H.-F. J. Am. Chem. Soc. 2013, 135, 12968.  doi: 10.1021/ja406761j

    53. [53]

      Liu Y. -B., Du H. -F. Acta Chim. Sinica 2014, 72, 771 (in Chinese)  doi: 10.6023/A14040344

    54. [54]

      Chen, D.-J.; Klankermayer, J. Chem. Commun. 2008, 2130.
       

    55. [55]

      Chen, D.-J.; Wang, Y.-T.; Klankermayer, J. Angew. Chem., Int. Ed. 2010, 49, 9475.  doi: 10.1002/anie.201004525

    56. [56]

      Ghattas, G.; Chen, D.-J.; Pan, F.-F.; Klankermayer, J. Dalton Trans. 2012, 41, 9026.  doi: 10.1039/c2dt30536d

    57. [57]

      Chen, D.-J.; Leich, V.; Pan, F.-F.; Klankermayer, J. Chem. Eur. J. 2012, 18, 5184.  doi: 10.1002/chem.v18.17

    58. [58]

      Lindqvist, M.; Borre, K.; Axenov, K.; Kótai, B.; Nieger, M.; Leskelä, M.; Pápai, I.; Repo, T. J. Am. Chem. Soc. 2015, 137, 4038.  doi: 10.1021/ja512658m

    59. [59]

      (a) Mewald, M.; Oestreich, M. Chem. Eur. J. 2012, 18, 14079.
      (b) Hermeke, J.; Mewald, M.; Oestreich, M. J. Am. Chem. Soc. 2013, 135, 17537.

    60. [60]

      Süsse, L.; Hermeke, J.; Oestreich, M. J. Am. Chem. Soc. 2016, 138, 6940.  doi: 10.1021/jacs.6b03443

    61. [61]

      Liu, Y.-B.; Du, H.-F. J. Am. Chem. Soc. 2013, 135, 6810.  doi: 10.1021/ja4025808

    62. [62]

      Wei, S.-M.; Du, H.-F. J. Am. Chem. Soc. 2014, 136, 12261.  doi: 10.1021/ja507536n

    63. [63]

      Ren, X.-Y.; Li, G.; Wei, S.-M.; Du, H.-F. Org. Lett. 2015, 17, 990.  doi: 10.1021/acs.orglett.5b00085

    64. [64]

      Ren, X.-Y.; Du, H.-F. J. Am. Chem. Soc. 2016, 138, 810.  doi: 10.1021/jacs.5b13104

    65. [65]

      Ashley, A. E.; Thompson, A. L.; O'Hare, D. Angew. Chem., Int. Ed. 2009, 48, 9839.  doi: 10.1002/anie.v48:52

    66. [66]

      Caputo, C. B.; Hounjet, L. J.; Dobrovetsky, R.; Stephan, D. W. Science 2013, 341, 1374.  doi: 10.1126/science.1241764

    67. [67]

      Hounjet, L. J.; Caputo, C. B.; Stephan, D. W. Dalton Trans. 2013, 42, 2629.  doi: 10.1039/C2DT32711B

    68. [68]

      Porwal, D.; Oestreich, M. Eur. J. Org. Chem. 2016, 3307.

  • 加载中
    1. [1]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    2. [2]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    3. [3]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    4. [4]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    5. [5]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    6. [6]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    7. [7]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    8. [8]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    9. [9]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    10. [10]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    12. [12]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    13. [13]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    14. [14]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    15. [15]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    16. [16]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    17. [17]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    18. [18]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    19. [19]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    20. [20]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

Metrics
  • PDF Downloads(44)
  • Abstract views(3284)
  • HTML views(944)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return