Citation: Shen Xuqian, Cao Xihan, Zheng Wanbin, Yang Jun, Shi Yongsen, Hu Jingang, Wu Xiangmei, Yan Guobing. Recent Progress in the Research of Acetone in Coupling Reactions[J]. Chinese Journal of Organic Chemistry, ;2017, 37(2): 349-355. doi: 10.6023/cjoc201607043 shu

Recent Progress in the Research of Acetone in Coupling Reactions

  • Corresponding author: Yan Guobing, gbyan@lsu.edu.cn
  • Received Date: 28 July 2016
    Revised Date: 15 September 2016

    Fund Project: the National Natural Science Foundationof China 21572094

Figures(7)

  • Acetone is the simplest ketone, which has the typical reaction of ketones. In this paper, the recent development centering the coupling reactions of acetone including the formation of carbon-carbon, carbon-heteroatom bonds and the discussion of reaction mechanism, is reviewed.
  • 加载中
    1. [1]

      (a) Pan, J.; Wang, Y.; Chen, S.; Zhang, X.; Wang Y.; Zhou, Z. Tetrahedron 2016, 72, 240.
      (b) Wang, F.; Liu, Y.; Qi, Z.; Dai, W.; Li, X. Tetrahedron Lett. 2014, 55, 6399.
      (c) Lu, A.; Wu, R.; Wang, Y.; Wu, G.; Zhou, Z.; Fang, J.; Tang, C. J. Org. Chem. 2011, 76, 3872.
      (d) Onodera, G.; Matsumoto, H.; Nishibayashi, Y.; Uemura, S. Organometallics 2005, 24, 5799.
      (e) Özkar, S.; Finke, R. G. J. Am. Chem. Soc. 2005, 127, 4800.
      (f) Noland, W. E.; Konkel, M. J.; Konkel, L. C.; Pearce, B. C. J. Org. Chem. 1996, 61, 451.

    2. [2]

      For selected applications, see: (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
      (b) Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450.
      (c) Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534.
      (d) Bellina, F.; Rossi, R. Chem. Rev. 2010, 110, 1082.
      (e) Xiao, Q.; Zhang, Y.; Wang, J. Acc. Chem. Res. 2013, 46, 236.

    3. [3]

      (a) Palucki, M.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 11108.
      (b) Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1997, 119, 12382.
      (c) Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Angew. Chem., Int. Ed. 1997, 36, 1740.

    4. [4]

      (a) Culkin, D. A.; Hartwig, J. F. Acc. Chem. Res. 2003, 36, 234.
      (b) Shao, Z.; Zhang, H. Chin. J. Org. Chem. 2005, 25, 282.
      (c) Gong, J. F.; Xu, C.; Wu, Y. J. Prog. Chem. 2006, 18, 752.

    5. [5]

      (a) Chobanian, H. R.; Liu, P.; Chioda, M. D.; Guo, Y.; Lin, L. S. Tetrahedron Lett. 2007, 48, 1213.
      (b) Su, W. P.; Raders, S.; Verkade, J. G.; Liao, X. B.; Hartwig, J. F. Angew. Chem., Int. Ed. 2006, 45, 5852.
      (c) Liu, P.; Lanza, Jr., T. J.; Jewell, J. P.; Jones, C. P.; Hagmann, W. K.; Lin, L. S. Tetrahedron Lett. 2003, 44, 8869.
      (d) Kosugi, M.; Suzuki, M.; Hagiwara, I.; Goto, K.; Saitoh, K.; Migita, T. Chem. Lett. 1982, 939.

    6. [6]

      Hesp, K. D.; Lundgren, R. J.; Stradiotto, M. J. Am. Chem. Soc. 2011, 133, 5194.  doi: 10.1021/ja200009c

    7. [7]

      Alsabeh, P. G.; Stradiotto, M. Angew. Chem., Int. Ed. 2013, 52, 1.

    8. [8]

      Rotta-Loria, N. L.; Borzenko, A.; Alsabeh, P. G.; Lavery, C. B.; Stradiotto, M. Adv. Synth. Catal. 2015, 357, 100.  doi: 10.1002/adsc.v357.1

    9. [9]

      Ackermann, L.; Mehta, V. P. Chem. Eur. J. 2012, 18, 10230.  doi: 10.1002/chem.201201394

    10. [10]

      Li, P.; Lü, B.; Fu, C.; Ma, S. Adv. Synth. Catal. 2013, 355, 1255.  doi: 10.1002/adsc.v355.7

    11. [11]

      (a) Cartney, D.; Guiry, J. P. Chem. Soc. Rev. 2011, 40, 5122.
      (b) Ana, R.; Pathak, T. P.; Sigman, M. Chem. Rev. 2011, 111, 1417.

    12. [12]

      Gäbler, C.; Korb, M.; Schaarschmidt, D.; Hildebrandt, A.; Lang, H.; Adv. Synth. Catal. 2014, 356, 2979.  doi: 10.1002/adsc.201400235

    13. [13]

      (a) MacQueen, P. M.; Chisholm, A. J.; Hargreaves, B. K. V.; Stradiotto, M. Chem. Eur. J. 2015, 21, 11006.
      (b) Schranck, J.; Rotzler, J. Org. Process Res. Dev. 2015, 19, 1936.

    14. [14]

      Fu, W. C.; So, C. M.; Chow, W. K.; Yuen, O. Y.; Kwong, F. Y. Org. Lett. 2015, 17, 4612.  doi: 10.1021/acs.orglett.5b02344

    15. [15]

      Schranck, J.; Tlili, A.; Alsabeh, P. G.; Neumann, H.; Stradiotto, M.; Beller, M. Chem. Eur. J. 2013, 19, 12624.  doi: 10.1002/chem.201302590

    16. [16]

      For selective reviews, see: (a) Iqbal, J.; Bhatia, B.; Nayyar, N. K. Chem. Rev. 1994, 94, 519.
      (b) Sibi, M. P.; Porter, N. A. Acc. Chem. Res. 1999, 32, 163.
      (c) Gansäuer, A.; Bluhm, H. Chem. Rev. 2000, 100, 2771.
      (d) Robertson, J.; Pillai, J.; Lush, R. K. Chem. Soc. Rev. 2001, 30, 94.
      (e) Studer, A. Chem. Soc. Rev. 2004, 33, 263.
      (f) Brown, S. S.; Stutz, J. Chem. Soc. Rev. 2012, 41, 6405.
      (g) zirakis, M. D.; Orfanopoulos, M. Chem. Rev. 2013, 113, 5262.
      (h) Dénès, F.; Schiesser, C. H.; Renaud, P. Chem. Soc. Rev. 2013, 42, 7900.

    17. [17]

      (a) Norrish, R. G.; Bond, C. H. Nature 1936, 138, 1016.
      (b) Büchi, G.; Inman, C. G.; Lipinsky, E. S. J. Am. Chem. Soc. 1954, 76, 4327.
      (c) Nau, W. M.; Cozens, F. L.; Scaiano, J. C. J. Am. Chem. Soc. 1996, 118, 2275.
      (d) Reusch, W. J. Org. Chem. 1962, 27, 1882.
      (e) Majerski, K. M.; Pavlović, D.; Kulyk, M. Š. J. Org. Chem. 1993, 58, 252.
      (f) Chung, W.-S.; Ho, C.-C. Chem. Commun. 1997, 317.
      (g) Toltl, N. P.; Leigh, W. J. Organometallics 1996, 15, 2554.
      (h) Ghandi, K.; Addison-Jones, B.; Brodovitch, J.-C.; McCollum, B. M.; McKenzie, I.; Percival, P. W. J. Am. Chem. Soc. 2003, 125, 9594.
      (i) Shiraishi, Y.; Tsukamoto, D.; Hirai, T. Org. Lett. 2008, 10, 3117.
      (j) Tsukamoto, D.; Shiraishi, Y.; Hirai, T. J. Org. Chem. 2010, 75, 1450.

    18. [18]

      Schweitzer-Chaput, B.; Demaerel, B. J.; Engler, H.; Klussmann, M. Angew. Chem., Int. Ed. 2014, 53, 8737.  doi: 10.1002/anie.201401062

    19. [19]

      (a) Xia, X.-F.; Zhu, S-L.; Zeng, M.; Gu, Z.; Wang, H.; Li, W. Tetrahedron 2015, 71, 6099.
      (b) oess, E.; Karanestora1, S.; Bosnidou1, A.-E.; Schweitzer-haput, B.; Hasenbeck, M.; Klussmann, M. Synlett 2015, 1973.

    20. [20]

      Chu, X.-Q.; Meng, H.; Zi, Y.; Xu, X.-P.; Ji, S.-J. Chem. Eur. J. 2014, 20, 17198.  doi: 10.1002/chem.201404463

    21. [21]

      Zhu, L.; Chen, H.; Wang, Z.; Li, C. Org. Chem. Front. 2014, 1, 1299.  doi: 10.1039/C4QO00256C

    22. [22]

      Lan, X.-W.; Wang, N.-X.; Zhang, W.; Wen, J.-L.; Bai, C.-B.; Xing, Y.; Li, Y.-H. Org. Lett. 2015, 17, 4460.  doi: 10.1021/acs.orglett.5b02116

    23. [23]

      Wang, C.; Lei, S.; Cao, H.; Qiu, S.; Liu, J.; Deng, H.; Yan, C. J. Org. Chem. 2015, 80, 12725.  doi: 10.1021/acs.joc.5b02417

    24. [24]

      Yan, G.; Borah, A. J.; Wang, L.; Pan, Z.; Chen, C.; Shen, X.; Wu, X. Tetrahedron Lett. 2015, 56, 4305.  doi: 10.1016/j.tetlet.2015.05.059

    25. [25]

      Shen, X.; Borah, A. J.; Cao, X.; Pan, W.; Yan, G.; Wu, X. Tetrahedron Lett. 2015, 56, 6484.  doi: 10.1016/j.tetlet.2015.10.006

  • 加载中
    1. [1]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    2. [2]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    3. [3]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    4. [4]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    5. [5]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    6. [6]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    7. [7]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    8. [8]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    9. [9]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    10. [10]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    11. [11]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    12. [12]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    13. [13]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    14. [14]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    15. [15]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    16. [16]

      Hongmei Chai Yixia Ren Xiangyang Hou Long Tang Jiawei Xie . 智能手机光传感的“丙酮碘化反应”实验改进. University Chemistry, 2025, 40(6): 193-200. doi: 10.12461/PKU.DXHX202407086

    17. [17]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    18. [18]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    19. [19]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    20. [20]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(17)
  • Abstract views(2738)
  • HTML views(614)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return