Citation: Bian Rongjian, Bao Xiaoguang. Computational Insights into the Mechanism of Pd (0) and Ben-zoic Acid Co-Catalyzed Hydroamination of Internal Alkynes[J]. Chinese Journal of Organic Chemistry, ;2017, 37(1): 190-195. doi: 10.6023/cjoc201607005 shu

Computational Insights into the Mechanism of Pd (0) and Ben-zoic Acid Co-Catalyzed Hydroamination of Internal Alkynes

  • Corresponding author: Bao Xiaoguang, xgbao@suda.edu.cn
  • Received Date: 4 July 2016
    Revised Date: 28 August 2016

    Fund Project: the National Natural Science Foundation of China 21302133

Figures(5)

  • Computational studies were carried out to investigate the detailed mechanism of Pd (0) and benzoic acid co-catalyzed hydroamination of internal alkynes.In the presence of the benzoic acid, the formation of a hydridopalladium intermediate via the oxidative addition (OA) of the O-H bond of benzoic acid into the Pd (0) complex center might not be a favorable reaction pathway to start the reaction.Instead, after the coordination of benzoic acid with the Pd (0)-alkyne complex, a proton transfer process from the acid to carbon of alkyne is found to be a favorable pathway, leading to the alkenyl (PhCOO) Pd (Ⅱ) intermediate.Next, the resulting alkenyl (PhCOO) Pd (Ⅱ) species would produce phenylallene intermediate via a β-H elimination step assisted by the formed benzoate anion.Subsequently, the benzoic acid might undergo a second proton step to the phenylallene intermediate to produce the π-allylpalladium species.Finally, the amine substrate could undergo a nucleophilic addition to the terminal carbon of the π-allylpalladium species to produce the hydroamination product.
  • 加载中
    1. [1]

      (a) Pohlki, F.; Doye, S. Chem. Soc. Rev. 2003, 32, 104.
      (b) Severin, R.; Doye, S. Chem. Soc. Rev. 2007, 36, 1407.
      (c) Huang, L.; Arndt, M.; Gooßen, K.; Heydt, H.; Gooßen, L. J. Chem.Rev. 2015, 115, 2596.

    2. [2]

      (a) Mizushima, E.; Chatani, N.; Kakiuchi, F. J. Organomet. Chem. 2006, 691, 5739.
      (b) Kramer, S.; Dooleweerdt, K.; Lindhardt, A. T.; Rottländer, M.; Skrydstrup, T. Org. Lett. 2009, 11, 4208.
      (c) Sun, J.; Kozmin, S. A. Angew. Chem., Int. Ed.2006, 45, 4991.
      (d) Mahdi, T.; Stephan, D. W. Angew. Chem., Int. Ed. 2013, 52, 12418.

    3. [3]

      (a) Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2000, 122, 9546.
      (b) Roesky, P. W.; Müller, T. E. Angew. Chem., Int. Ed. 2003, 42, 2708.

    4. [4]

      (a) Zhou, J.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 12220.
      (b) Zeng, X. Chem. Rev. 2013, 113, 6864.

    5. [5]

      (a) Müller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675.
      (b) Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795.

    6. [6]

      (a) Komeyama, K.; Morimoto, T.; Takaki, K.Angew. Chem., Int. Ed. 2006, 45, 2938.
      (b) Michaux, J.; Terrasson, V.; Marque, S.; Wehbe, J.; Prim, D.; Campagne, J-M. Eur. J. Org. Chem. 2007, 2007, 2601.

    7. [7]

      Shigehisa, H.; Koseki, N.; Shimizu, N.; Fujisawa, M.; Niitsu, M.; Hiroya, K. J. Am. Chem. Soc. 2014, 136, 13534.  doi: 10.1021/ja507295u

    8. [8]

      (a) Reyes-Saánchez, A.; Canñavera-Buelvas, F.; Barrios-Francisco, R.; Cifuentes-Vaca, O. L.; Flores-Alamo, M.; Garciáa, J. J. Organometallics 2011, 30, 3340.
      (b) Reyes-Sánchez, A.; García-Ventura, I.; García, J. J. Dalton Trans. 2014, 43, 1762.

    9. [9]

      (a) Rucker, R. P.; Whittaker, A. M.; Dang, H.; Lalic, G.J. Am. Chem. Soc. 2012, 134, 6571.
      (b) Zhu, S.; Niljianskul, N.; Buchwald, S. L. J. Am. Chem. Soc. 2013, 135, 15746.

    10. [10]

      (a) Bódis, J.; Müller, T. E.; Lercher, J. A. Green Chem. 2003, 5, 227.
      (b) Zulys, A.; Dochnahl, M.; Hollmann, D.; Lö hnwitz, K.; Herrmann, J-S.; Roesky, P. W.; Blechert, S. Angew.Chem., Int.Ed. 2005, 44, 7794.
      (c) Lühl, A.; Hartenstein, L.; Blechert, S.; Roesky, P. W. Organometallics 2012, 31, 7109.

    11. [11]

      (a) Kondo, T.; Okada, T.; Suzuki, T.; Mitsudo, T-A. J. Organomet. Chem. 2001, 622, 149.
      (b) Utsunomiya, M.; Hartwig, J. F. J. Am. Chem. Soc. 2004, 126, 2702.
      (c) Tokunaga, M.; Eckert, M.; Wakatsuki, Y.Angew.Chem., Int.Ed. 1999, 38, 3222.

    12. [12]

      (a) Utsunomiya, M.; Kuwano, R.; Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 5608.
      (b) Hesp, K. D.; Stradiotto, M. ChemCatChem 2010, 2, 1192.

    13. [13]

      (a) Banerjee, D.; Junge, K.; Beller, M. Org. Chem. Front. 2014, 1, 368.
      (b) Banerjee, D.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2014, 53, 1630.
      (c) Löber, O.; Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123, 4366.

    14. [14]

      (a) Garlets, Z. J.; Silvi, M.; Wolfe, J. P. Org. Lett. 2016, 18, 2331.
      (b) Mothe, S. R.; Novianti, M. L.; Ayers, B. J.; Chan, P. W. H. Org. Lett. 2014, 16, 4110.
      (c) Wong, V. H. L.; Hor, T. S. A.; Hii, K. K. M. Chem. Commun. 2013, 49, 9272.

    15. [15]

      Yudha, S. S.; Kuninobu, Y.; Takai, K. Org. Lett. 2007, 9, 5609.  doi: 10.1021/ol702564e

    16. [16]

      (a) Sevov, C. S.; Zhou, J. S.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 3200.
      (b) Pan, S.; Endo, K.; Shibata, T. Org. Lett. 2012, 14, 780.

    17. [17]

      (a) Qian, H.; Widenhoefer, R. A. Org. Lett. 2005, 7, 2635.
      (b) Hoover, J. M.; DiPasquale, A.; Mayer, J. M.; Michael, F. E. J. Am. Chem. Soc. 2010, 132, 5043.

    18. [18]

      (a) Zhang, Z.; Lee, S. D.; Widenhoefer, R. A.J. Am. Chem. Soc. 2009, 131, 5372.
      (b) Mizushima, E.; Hayashi, T.; Tanaka, M. Org. Lett. 2003, 5, 3349.

    19. [19]

      Pawlas, J.; Nakao, Y.; Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 3669.  doi: 10.1021/ja017575w

    20. [20]

      Duan, H.; Sengupta, S.; Petersen, J. L.; Akhmedov, N. G.; Shi, X. J. Am. Chem. Soc. 2009, 131, 12100.  doi: 10.1021/ja9041093

    21. [21]

      (a) Kadota, I.; Shibuya, A.; Lutete, L. M.; Yamamoto, Y. J. Org. Chem. 1999, 64, 4570.
      (b) Chen, Q.-A.; Chen, Z.; Dong, V. M. J. Am. Chem. Soc. 2015, 137, 8392.

    22. [22]

      Zhang, H.; Bao, X. RSC Adv. 2015, 5, 84636.  doi: 10.1039/C5RA14086B

    23. [23]

      Chai, J. D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615.  doi: 10.1039/b810189b

    24. [24]

      (a) Dang, L.; Shibl, M. F.; Yang, X.; Harrison, D. J.; Alak, A.; Lough, A. J.; Fekl, U.; Brothers, E. N.; Hall, M. B. Inorg. Chem. 2013, 52, 3711.
      (b) Li, H.; Hall, M. B. J. Am. Chem. Soc. 2014, 136, 383.

    25. [25]

      Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257.  doi: 10.1063/1.1677527

    26. [26]

      Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.  doi: 10.1063/1.448975

    27. [27]

      Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999.  doi: 10.1021/cr9904009

    28. [28]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT, 2010.

    29. [29]

      In the absence of the coordination of 1-phenyl-1-propyne, the oxidative addition of O-H bond of benzoic acid onto Pd (0) still has a very high energy barrier (see Figure S1).

    30. [30]

      We also investigated the possibility of amine attack to the π-allylpalladium species from the other side to produce the hydroamination product. The located transition state (TS10), however, is 35.5 kJ/mol higher in energy than TS6, suggesting a disfavored pathway (see Figure S3).

  • 加载中
    1. [1]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    4. [4]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    5. [5]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    6. [6]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    7. [7]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    8. [8]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    9. [9]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    10. [10]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    11. [11]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    12. [12]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    13. [13]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    14. [14]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    15. [15]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    16. [16]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    17. [17]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    18. [18]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    19. [19]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    20. [20]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

Metrics
  • PDF Downloads(12)
  • Abstract views(1601)
  • HTML views(212)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return