Citation: Zhang Huimin, Wu Yancheng, You Jiayi, Cao Liang, Ding Sha, Jiang Kai, Wang Zhaoyang. New Progress in the Design, Synthesis and Application of Fluorescent Probes for Fluoride Ion Detection[J]. Chinese Journal of Organic Chemistry, ;2016, 36(11): 2559-2582. doi: 10.6023/cjoc201606012 shu

New Progress in the Design, Synthesis and Application of Fluorescent Probes for Fluoride Ion Detection

  • Corresponding author: Wu Yancheng, wuycity@gmail.com Wang Zhaoyang, wangzy@scnu.edu.cn
  • Received Date: 6 June 2016
    Revised Date: 28 June 2016

    Fund Project: Guangzhou Science and Technology Project Scientific Special 201607010251the 3rd Talents Special Funds of Guangdong Higher Education Guangdong-Finance-Education [2011]431the Natural Science Foundation of Guangdong Province 2014A030313429

Figures(39)

  • The recognition and detection of trace fluoride ions in vivo and vitro have attracted great attention in recent years. More and more new fluorescent probes (FP) for fluoride ion detection have been designed and synthesized due to their advantages, such as high sensitivity, good selectivity and convenient operation. According to the different structural features and recognition mechanism, fluoride ion FP can be classified into two categories as deprotonation and reaction type. The new progress especially in recent three years on their molecular design, synthesis and application is reviewed on the viewpoint of green chemistry. The future trend of fluoride ion FP is also prospected.
  • 加载中
    1. [1]

      Kaur, K.; Mittal, S. K.; Kumar, S. K. A.; Kumar, A.; Kumar, S. Anal. Methods 2013, 5, 5565.  doi: 10.1039/c3ay40912k

    2. [2]

      Brugnara, A.; Topic, F.; Rissanen, K.; de La Lande, A.; Colasson, B.; Reinaud, O. Chem. Sci. 2014, 5, 3897.  doi: 10.1039/C4SC01457J

    3. [3]

      Langton, M. J.; Serpell, C. J.; Beer, P. D. Angew. Chem., Int. Ed. 2015, 55, 1974.

    4. [4]

      Wu, S.-Z.; Han, T.-Y.; Guo, J.-J.; Cheng, Y.-S. Sens. Actuators, B 2015, 220, 1305.  doi: 10.1016/j.snb.2015.07.054

    5. [5]

      Mani, V.; Li, W.-Y.; Gu, J.-A.; Lin, C.-M.; Huang, S.-T. Talanta 2015, 131, 121.  doi: 10.1016/j.talanta.2014.07.074

    6. [6]

      Cametti, M; Rissanen, K. Chem. Commun. 2009, 2809.

    7. [7]

      Cametti, M.; Rissanen, K. Chem. Soc. Rev. 2013, 42, 2016.  doi: 10.1039/C2CS35439J

    8. [8]

      Manjare, S. T; Kim, Y; Churchill, D. G. Acc. Chem. Res. 2014, 47, 2985.  doi: 10.1021/ar500187v

    9. [9]

      Zhou, Y.; Zhang, J. F.; Yoon, J. Chem. Rev. 2014, 114, 5511.  doi: 10.1021/cr400352m

    10. [10]

      Jiao, Y.; Zhu, B.-C.; Chen, J.-H.; Duan, X.-H. Theranostics 2015, 5, 173.  doi: 10.7150/thno.9860

    11. [11]

      Zhen, W.; Ying, Z.; Jun, R. Chem. Sens. 2012, 32, 41 (in Chi-nese).
       

    12. [12]

      Li, Y.-J.; Xie, D.-Y.; Pang, X.-L.; Yu, X.-D.; Yu, T.; Ge, X.-T. Sens. Actuators, B 2016, 227, 660.  doi: 10.1016/j.snb.2016.01.047

    13. [13]

      Sun, J.-Q.; Ye, B.-F.; Xia, G.-M.; Zhang, X.-H.; Wang, H.-M. Sens. Actuators, B 2016, 233, 76.  doi: 10.1016/j.snb.2016.04.052

    14. [14]

      Bhoi, A. K.; Das, S. K.; Majhi, D.; Sahu, P. K.; Nijamudheen, A.; Anoop, N.; Rahaman, A.; Sarkar, M. J. Phys. Chem. B 2014, 118, 9926.  doi: 10.1021/jp504631n

    15. [15]

      Hu, J.-M.; Li, C.-H.; Cui, Y.; Liu, S.-Y. Macromol. Rapid Commun. 2011, 32, 610.  doi: 10.1002/marc.v32.7

    16. [16]

      Saravanan, C.; Easwaramoorthi, S.; Hsiow, C. Y.; Wang, K.; Hayashi, M.; Wang, L. Org. Lett. 2014, 16, 354.  doi: 10.1021/ol403082p

    17. [17]

      Sivaraman, G.; Chellappa, D. J. Mater. Chem. B 2013, 1, 5768.  doi: 10.1039/c3tb21041c

    18. [18]

      Wu, Y.-C.; You, J.-Y.; Guan, L.-T. Shi, J.; Cao, L.; Wang, Z.-Y. Chin. J. Org. Chem. 2015, 35, 2465 (in Chinese).  doi: 10.6023/cjoc201507022
       

    19. [19]

      Batista, R. M. F.; Costa, S. P. G.; Raposo, M. M. M. J. Photo-chem. Photobiol. A 2013, 259, 33.  doi: 10.1016/j.jphotochem.2013.03.001

    20. [20]

      Ali, R.; Razi, S. S.; Gupta, R. C.; Dwivedi, S. K.; Misra, A. New J. Chem. 2016, 40, 162.  doi: 10.1039/C5NJ01920F

    21. [21]

      Hu, J.-Y.; Liu, R.; Zhu, X.-L.; Cai, X.; Zhu, H.-J. Chin. Chem. Lett. 2015, 26, 339.  doi: 10.1016/j.cclet.2014.10.028

    22. [22]

      Xiong, J.; Cui, L.; Liu, W.; Beves, J. E.; Li, Y.-Y.; Zuo, J.-L. Tetrahedron Lett. 2013, 54, 1998.  doi: 10.1016/j.tetlet.2013.02.005

    23. [23]

      Yang, C.-L.; Xu, J.; Li, J.-Y.; Lu, M.-G.; Li, Y.-B.; Wang, X.-L. Sens. Actuators, B 2014, 196, 133.  doi: 10.1016/j.snb.2014.01.123

    24. [24]

      Liu, T.; Nonat, A.; Beyler, M.; Regueiro-Figueroa, M.; Nono, K. N.; Jeannin, O.; Camerel, F.; Debaene, F.; Cianferani-Sanglier, S.; Tripier, R. Angew. Chem., Int. Ed. 2014, 53, 7259.  doi: 10.1002/anie.201404847

    25. [25]

      Sarkar, A.; Bhattacharyya, S.; Mukherjee, A. Dalton Trans. 2016, 45, 1166.  doi: 10.1039/C5DT03209A

    26. [26]

      Parthiban, C.; Ciattini, S.; Chelazzi, L.; Elango, K. P. Sens. Actuators, B 2016, 231, 768.  doi: 10.1016/j.snb.2016.03.106

    27. [27]

      Parthiban, C.; Elango, K. P. Sens. Actuators, B 2015, 215, 544.  doi: 10.1016/j.snb.2015.03.105

    28. [28]

      Pazik, A.; Skwierawska, A. Supramol. Chem. 2013, 25, 189.  doi: 10.1080/10610278.2012.745546

    29. [29]

      Yang, X.-F.; Zhang, G.-G.; Li, Y.-X.; Liu, Z.; Gong, X.-Q.; Gao, B.; Zhang, G.-Y.; Cui, Y.; Sun, G.-X. RSC Adv. 2015, 5, 22455.  doi: 10.1039/C4RA14639E

    30. [30]

      Uahengo, V.; Xiong, B.; Cai. P.; Daniel, L. S. Rhyman, L.; Ramasami, P. Anal. Chem. Res. 2016, 8, 1.  doi: 10.1016/j.ancr.2016.03.001

    31. [31]

      Yang, X.-F.; Xie, L.-J.; Ning, R.; Gong, X.-Q.; Liu, Z.; Li, Y.-X.; Zheng, L.-Y.; Zhang, G.-G.; Gao, B.; Cui, Y.; Sun, G.-X.; Zhang, G.-Y. Sens. Actuators, B 2015, 210, 784.  doi: 10.1016/j.snb.2015.01.025

    32. [32]

      Niu, H.; Shu, Q.-H.; Jin, S.-H.; Li, B.-J.; Zhu, J.-P.; Li, L.-J.; Chen, S.-S. Spectrochim. Acta, Part A 2016, 153, 194.  doi: 10.1016/j.saa.2015.08.030

    33. [33]

      Chetia, B.; Iyer, P. K. Sens. Actuators, B 2014, 201, 191.  doi: 10.1016/j.snb.2014.04.088

    34. [34]

      Liu, X.-M.; Zhao, Q.; Li, Y.; Song, W.-C.; Li, Y.-P.; Chang, Z.; Bu, X.-H. Chin. Chem. Lett. 2013, 24, 962.  doi: 10.1016/j.cclet.2013.06.032

    35. [35]

      Jeyanthi, D.; Iniya, M.; Krishnaveni, K.; Chellappa, D. Spectrochim. Acta, Part A 2015, 136, 1269.  doi: 10.1016/j.saa.2014.10.013

    36. [36]

      Anand, T.; Sivaramana, G.; Iniya, M.; Siva, A.; Chellappa, D. Anal. Chim. Acta 2015, 876, 1.  doi: 10.1016/j.aca.2015.03.035

    37. [37]

      Lee, J. Y.; Rao, B. A.; Hwang, J. Y.; Son, Y. A. Sens. Actuators, B 2015, 220, 1070.  doi: 10.1016/j.snb.2015.06.041

    38. [38]

      Vinithra, G.; Suganya, S.; Velmathi, S. Tetrahedron Lett. 2013, 54, 5612.  doi: 10.1016/j.tetlet.2013.08.005

    39. [39]

      Satheshkumar, A.; Elango, K. P. Dyes Pigm. 2013, 96, 364.  doi: 10.1016/j.dyepig.2012.08.014

    40. [40]

      Kumar, S. M.; Dhahagani, K.; Rajesh, J. Nehru, K.; Annaraj, J.; Chakkaravarthi, G.; Rajagopal, G. Polyhedron 2013, 59, 58.  doi: 10.1016/j.poly.2013.04.048

    41. [41]

      Ashokkumar, P.; Weisshoff, H.; Kraus, W.; Rurack, K. Angew. Chem., Int. Ed. 2014, 53, 2225.  doi: 10.1002/anie.201307848

    42. [42]

      Yan, X.-Q.; Zhuo, J.-B.; Wang, J.-C.; Yuan, Y.-F. Chin. J. Org. Chem. 2015, 35, 2184 (in Chinese).

    43. [43]

      Basheer, S. M.; Willis, A. C.; Pace, R. J.; Sreekanth, A. Polyhedron 2016, 109, 7.  doi: 10.1016/j.poly.2016.01.021

    44. [44]

      Sharma, S.; Hundal, M. S.; Hundal, G. Tetrahedron Lett. 2013, 54, 2423.  doi: 10.1016/j.tetlet.2013.03.003

    45. [45]

      Yang, X.-F.; Zheng, L.-Y.; Xie, L.-J.; Liu, Z.; Li, Y.-X.; Ning, R.; Zhang, G.-G.; Gong, X.-Q.; Gao, B.; Liu, C.-X.; Cui, Y.; Sun, G.-X.; Zhang, G.-Y. Sens. Actuators, B 2015, 207, 9.  doi: 10.1016/j.snb.2014.10.095

    46. [46]

      Mahapatra, A. K.; Karmakar, P.; Roy, J.; Manna, S.; Maiti, K.; Sahoo, P.; Mandal, D. RSC Adv. 2015, 5, 37935.  doi: 10.1039/C5RA05327G

    47. [47]

      Biswas, S.; Gangopadhyay, M.; Barman, S.; Sarkar, J.; Singh, N. D. P. Sens. Actuators, B 2016, 222, 823.  doi: 10.1016/j.snb.2015.08.090

    48. [48]

      Liu, Y.-W.; Kao, M.-X.; Wu, A.-T. Sens. Actuators, B 2015, 208, 429.  doi: 10.1016/j.snb.2014.11.039

    49. [49]

      Goswami, S.; Maity, S.; Maity, A. C.; Das, A. K.; Pakhira, B.; Khanra, K.; Bhattacharyya, N.; Sarkar, S. RSC Adv. 2015, 5, 5735.  doi: 10.1039/C4RA07838A

    50. [50]

      Singh, J.; Yadav, M.; Singh, A.; Singh, N. Dalton Trans. 2015, 44, 12589.  doi: 10.1039/C5DT01063B

    51. [51]

      Mori, H.; Takahashi, E.; Ishizuki, A.; Nakabayashi, K. Macromolecules 2013, 46, 6451.  doi: 10.1021/ma400596r

    52. [52]

      Erdemir, S.; Kocyigit, O.; Alici, O.; Malkondu, S. Tetrahedron Lett. 2013, 54, 613.  doi: 10.1016/j.tetlet.2012.11.138

    53. [53]

      Sharma, R.; Mittal, S. K.; Chhibber, M. J. Electrochem. Soc. 2015, 162, B248.

    54. [54]

      Maiti, D. K.; Roy, S.; Datta, A.; Banerjee, A. Chem. Phys. Lett. 2013, 588, 76.  doi: 10.1016/j.cplett.2013.09.056

    55. [55]

      Khanmohammadi, H.; Rezaeian, K. RSC Adv. 2014, 4, 1032.  doi: 10.1039/C3RA42709A

    56. [56]

      Alam, P.; Kachwal, V.; Laskar, I. R. Sens. Actuators, B 2016, 228, 539.  doi: 10.1016/j.snb.2016.01.024

    57. [57]

      Suganya, S.; Velmathi, S. J. Mol. Recognit. 2013, 26, 259.  doi: 10.1002/jmr.v26.6

    58. [58]

      Na, Y. J.; Choi, Y. W.; Yun, J. Y.; Park, K. M.; Chang, P. S.; Kim, C. Spectrochim. Acta, Part A 2015, 136, 1649.  doi: 10.1016/j.saa.2014.10.060

    59. [59]

      Song, E. J.; Kim, H.; Hwang, I. H.; Kim, K. B.; Kim, A. R.; Noh, I.; Kim, C. Sens. Actuators, B 2014, 195, 36.  doi: 10.1016/j.snb.2014.01.009

    60. [60]

      Lin, Q.; Yang, Q.-P.; Sun, B.; Lou, J.-C.; Wei, T.-B.; Zhang, Y.-M. RSC Adv. 2015, 5, 11786.  doi: 10.1039/C4RA09624J

    61. [61]

      Yan, G.-T.; Wu, G.-Y.; Qu, W.-J.; Shi, B.-B.; Lin, Q.; Yao, H.; Zhang, Y.-M.; Wei, T.-B. Supramol. Chem. 2016, 27, 552.

    62. [62]

      Liu, R.-Y.; Gao, Y.; Zhang, Q.-B.; Yang, X.-D.; Lu, X.-W.; Ke, Z.-Y.; Zhou, W.-Q.; Qu, J.-Q. New J. Chem. 2014, 38, 2941.  doi: 10.1039/c4nj00018h

    63. [63]

      Zheng, X.-J.; Zhu, W.-C.; Liu, D.; Ai, H.; Huang, Y.; Lu, Z.-Y. ACS Appl. Mater. Interfaces 2014, 6, 7996.  doi: 10.1021/am501546h

    64. [64]

      Ghosh, D.; Rhodes, S.; Hawkins, K.; Winder, D.; Atkinson, A.; Ming, W. H.; Padgett, C.; Orvis, J.; Aiken, K.; Landge, S. New J. Chem. 2015, 39, 295.  doi: 10.1039/C4NJ01411A

    65. [65]

      Balamurugan, A; Lee, H. I. Sens. Actuators, B 2015, 216, 80.  doi: 10.1016/j.snb.2015.04.026

    66. [66]

      Mahapatra, A. K.; Maiti, K.; Sahoo, P.; Nandi, P. K. J. Lumin. 2013, 143, 349.  doi: 10.1016/j.jlumin.2013.05.002

    67. [67]

      Liu, C.-X.; Xu, -J.; Yang, F.; Zhou, W.; Li, Z.-X.; Wei, L.-H.; Yu, M.-M. Sens. Actuators, B 2015, 212, 364.  doi: 10.1016/j.snb.2015.02.010

    68. [68]

      Ghosh, P.; Kumar, N.; Mukhopadhyay, S. K.; Banerjee, P. Sens. Actuators, B 2016, 224, 899.  doi: 10.1016/j.snb.2015.11.022

    69. [69]

      Kumar, D.; Thomas, K. R. J. RSC Adv. 2014, 4, 56466.  doi: 10.1039/C4RA10482J

    70. [70]

      Xu, S.-Y.; Sun, X.-L.; Ge, H.-B.; Arrowsmith, R. L.; Fossey, J. S.; Pascu, S. I.; Jiang, Y.-B.; James, T. D. Org. Biomol. Chem. 2015, 13, 4143.  doi: 10.1039/C4OB02267J

    71. [71]

      Iniya, M.; Jeyanthi, D.; Krishnaveni, K.; Chellappa, D. J. Lumin. 2015, 157, 383.  doi: 10.1016/j.jlumin.2014.09.018

    72. [72]

      Kanagaraj, K.; Pitchumani, K. Chem. Asian J. 2014, 9, 146.  doi: 10.1002/asia.201300816

    73. [73]

      Sen Gupta, A.; Paul, K.; Luxami, V. Spectrochim. Acta, Part A 2015, 138, 67.  doi: 10.1016/j.saa.2014.11.026

    74. [74]

      Wang, Y.; Zhao, Q.; Zang, L.-B.; Liang, C.-S.; Jiang, S.-M. Dyes Pigm. 2015, 123, 166.  doi: 10.1016/j.dyepig.2015.07.039

    75. [75]

      Ponnuvel, K.; Padmini, V. J. Lumin. 2016, 169, 289.  doi: 10.1016/j.jlumin.2015.09.027

    76. [76]

      Zou, C.-Y.; Qiao, Q.-L.; Zhao, M.; Mao, D.-Q.; Wang, D.-F.; Feng, L.; Cui, J.-N.; Xu, Z.-C. RSC Adv. 2014, 4, 43746.  doi: 10.1039/C4RA06062H

    77. [77]

      Li, Y.-H.; Duan, Y.; Zheng, J.; Li, J.-S.; Zhao, W.-J.; Yang, S.; Yang, R.-H. Anal. Chem. 2013, 85, 11456.  doi: 10.1021/ac402592c

    78. [78]

      Hu, R.; Feng, J.-A.; Hu, D.-H.; Wang, S.-Q.; Li, S.-Y.; Li, Y.; Yang, G.-Q. Angew. Chem., Int. Ed. 2010, 49, 4915.  doi: 10.1002/anie.v49:29

    79. [79]

      Calderon-Ortiz, L. K.; Tauscher, E.; Bastos, E. L.; Gorls, H.; Weiss, D.; Beckert, R. Eur. J. Org. Chem. 2012, 2535.

    80. [80]

      Ke, B.-W.; Chen, W.-X.; Ni, N.-T.; Cheng, Y.-F.; Dai, C.-F.; Dinh, H.; Wang, B.-H. Chem. Commun. 2013, 49, 2494.  doi: 10.1039/C2CC37270C

    81. [81]

      Roy, A.; Kand, D.; Saha, T.; Talukdar, P. Chem. Commun. 2014, 50, 5510.  doi: 10.1039/c4cc01665c

    82. [82]

      Roy, A.; Kand, D.; Saha, T.; Talukdar, P. RSC Adv. 2014, 4, 33890.  doi: 10.1039/C4RA06933A

    83. [83]

      Roy, A.; Datar, A.; Kand, D.; Saha, T.; Talukdar, P. Org. Biomol. Chem. 2014, 12, 2143.  doi: 10.1039/c3ob41886c

    84. [84]

      Wu, Z.-S.; Tang, X.-J. Anal. Chem. 2015, 87, 8613.  doi: 10.1021/acs.analchem.5b02578

    85. [85]

      Turan, I. S.; Akkaya, E. U. Org. Lett. 2014, 16, 1680.  doi: 10.1021/ol5003412

    86. [86]

      Hou, P.; Chen, S.; Song, X.-Z. Luminescence 2014, 29, 423.  doi: 10.1002/bio.v29.5

    87. [87]

      Hou, P.; Chen, S.; Wang, H.-B.; Wang, J.-X.; Voitchovsky, K.; Song, X.-Z. Chem. Commun. 2014, 50, 320.  doi: 10.1039/C3CC46630B

    88. [88]

      Zhang, S.-L.; Fan, J.-L.; Zhang, S.-Z.; Wang, J.-Y.; Wang, X.-W.; Du, J.-J.; Peng, X.-J. Chem. Commun. 2014, 50, 14021.  doi: 10.1039/C4CC05094K

    89. [89]

      Peng, Y.; Dong, Y.-M.; Dong, M.; Wang, Y.-W. J. Org. Chem. 2012, 77, 9072.  doi: 10.1021/jo301548v

    90. [90]

      Wang, C.-Y.; Yang, S.; Yi, M.; Liu, C.-H.; Wang, Y.-J.; Li, J.-S.; Li, Y.-H.; Yang, R.-H. ACS Appl. Mater. Interfaces 2014, 6, 9768.  doi: 10.1021/am502142d

    91. [91]

      Wu, X.-X.; Niu, Q.-F.; Li, T.-D. Sens. Actuators, B 2016, 222, 714.  doi: 10.1016/j.snb.2015.08.097

    92. [92]

      Huang, Y.-C.; Chen, C.-P.; Wu, P.-J.; Kuo, S.-Y.; Chan, Y.-H. J. Mater. Chem. B 2014, 2, 6188.  doi: 10.1039/C4TB01026D

    93. [93]

      Cheng, X.-H.; Jia, H.-Z.; Feng, J.; Qin, J.-G.; Li, Z. Sens. Actuators, B 2014, 199, 54.  doi: 10.1016/j.snb.2014.03.054

    94. [94]

      Zheng, F.-Y.; Zeng, F.; Yu, C.-M.; Hou, X.-F.; Wu, S.-Z. Chem. Eur. J. 2013, 19, 936.  doi: 10.1002/chem.201202732

    95. [95]

      Dhanunjayarao, K.; Mukundam, V.; Venkatasubbaiah, K. Sens. Actuators, B 2016, 232, 175.  doi: 10.1016/j.snb.2016.03.090

    96. [96]

      Yang, S.-J.; Liu, Y.; Feng, G.-Q. RSC Adv. 2013, 3, 20171.  doi: 10.1039/c3ra42613k

    97. [97]

      Li, L.; Ji, Y.-Z.; Tang, X.-J. Anal. Chem. 2014, 86, 10006.  doi: 10.1021/ac503177n

    98. [98]

      Yeh, J.-T.; Venkatesan, P.; Wu, S.-P. New J. Chem. 2014, 38, 6198.  doi: 10.1039/C4NJ01486C

    99. [99]

      Kumari, N; Dey, N; Bhattacharya, S. Analyst 2014, 139, 2370.  doi: 10.1039/c3an02020g

    100. [100]

      Imsick, B. G.; Acharya, J. R.; Nesterov, E. E. Chem. Commun. 2013, 49, 7043.  doi: 10.1039/c3cc43309a

    101. [101]

      Ning, Y.-N.; Wang, B.; Mao, G.-L. Chem. Eng. 2014, (9), 66 (in Chinese).
       

    102. [102]

      Xu, J.; Sun, S.-B.; Li, Q.; Yue, Y.; Li, Y.-D.; Shao, S.-J. Anal. Chim. Acta 2014, 849, 36.  doi: 10.1016/j.aca.2014.08.014

    103. [103]

      Wongsan, W.; Aeungmaitrepirom, W.; Chailapakul, O.; Ngeontae, W.; Tuntulani, T. Electrochim. Acta 2013, 111, 234.  doi: 10.1016/j.electacta.2013.08.072

    104. [104]

      Mou, X.; Liu, S.-J.; Dai, C.-L.; Ma, T.-C.; Zhao, Q.; Ling, Q.-D.; Huang, W. Sci. Sin. Chim. 2010, 40, 979 (in Chinese).
       

    105. [105]

      Cheng, F.; Bonder, E.M.; Jakle, F. J. Am. Chem. Soc. 2013, 135, 17286.  doi: 10.1021/ja409525j

    106. [106]

      Liu, X.-L.; Mao, M.; Ren, M.-G.; Tong, Y.; Song, Q.-H. Sens. Actuators, B 2014, 200, 317.  doi: 10.1016/j.snb.2014.04.070

    107. [107]

      Yuan, M.-S.; Wang, Q.; Wang, W.-J.; Wang, D.-E.; Wang, J.-R.; Wang, J.-Y. Analyst 2014, 139, 1541.  doi: 10.1039/c3an02179c

    108. [108]

      Liu, S.-J.; Zhao, Q.; Xu, W.-J.; Huang, W. Prog. Chem. 2008, 20, 1708 (in Chinese).
       

    109. [109]

      Zhang, G.-J.; Wang, L.-M.; Cai, X.-F.; Zhang, L.; Yu, J.-J.; Wang, A.-L. Dyes Pigm. 2013, 98, 232.  doi: 10.1016/j.dyepig.2013.02.015

    110. [110]

      Wu, S.-Y.; Chen, Z.-J.; Zhang, K.-W.; Hong, G.; Zhao, G.-S.; Wang, L.-M. Tetrahedron Lett. 2016, 57, 1390.  doi: 10.1016/j.tetlet.2016.02.076

    111. [111]

      Wang, L.-Y.; Fang, G.-P.; Cao, D.-R. Sens. Actuators, B 2015, 221, 63.  doi: 10.1016/j.snb.2015.06.050

    112. [112]

      Misra, R.; Jadhav, T.; Dhokale, B.; Mobin, S. M. Dalton Trans. 2015, 44, 16052.  doi: 10.1039/C5DT02356D

    113. [113]

      Wang, L.-Y.; Li, L.-Q.; Cao, D.-R. Sens. Actuators, B 2016, 228, 347.  doi: 10.1016/j.snb.2016.01.044

    114. [114]

      Boxi, S. S.; Paria, S. Dalton Trans. 2015, 45, 811.

    115. [115]

      Wang, H.; Hu, T.-Y.; Zhao, Z.-T.; Zhang, X.-Y.; Wang, Y.; Duan, X.-Q.; Liu, D.-W.; Jing, L.; Ma, Q. Talanta 2016, 149, 285.  doi: 10.1016/j.talanta.2015.12.001

    116. [116]

      Dong, X.-L.; Zhou, Y.-H.; Song, Y.-M.; Qu, J.-P. J. Fluorine Chem. 2015, 178, 61.  doi: 10.1016/j.jfluchem.2015.06.025

    117. [117]

      Bhalla, V.; Gupta, A.; Kumar, M. Talanta 2013, 105, 152.  doi: 10.1016/j.talanta.2012.11.044

    118. [118]

      Liu, J.; Xie, Y.-Q.; Lin, Q.; Shi, B.-B.; Zhang, P.; Zhang, Y.-M.; Wei, T.-B. Sens. Actuators, B 2013, 186, 657.  doi: 10.1016/j.snb.2013.06.080

    119. [119]

      Kar, C.; Samanta, S.; Mukherjee, S.; Datta, B.K.; Ramesh, A.; Das, G. New J. Chem. 2014, 38, 2660.  doi: 10.1039/c4nj00239c

    120. [120]

      Maity, S. B.; Bharadwaj, P. K. Inorg. Chem. 2013, 52, 1161.  doi: 10.1021/ic301915s

    121. [121]

      Sen, B.; Mukherjee, M.; Banerjee, S.; Pal, S.; Chattopadhyay, P. Dalton Trans. 2015, 44, 8708.  doi: 10.1039/C5DT00315F

    122. [122]

      Razi, S. S.; Srivastava, P.; Ali, R.; Gupta, R. C.; Dwivedi, S. K.; Misra, A. Sens. Actuators, B 2015, 209, 162.  doi: 10.1016/j.snb.2014.11.082

    123. [123]

      Kaur, M.; Cho, M. J.; Choi, D. H. Dyes Pigm. 2014, 103, 154.  doi: 10.1016/j.dyepig.2013.12.006

    124. [124]

      Hu, J.-Y.; Liu, R.; Cai, X.; Shu, M.-L.; Zhu, H.-J. Tetrahedron 2015, 71, 3838.  doi: 10.1016/j.tet.2015.04.016

    125. [125]

      Hinterholzinger, F. M.; Ruhle, B.; Wuttke, S.; Karaghiosoff, K.; Bein, T. Sci. Rep. 2013, 3, 2562.

    126. [126]

      Bineci, M.; Baglan, M.; Atilgan, S. Sens. Actuators, B 2016, 222, 315.  doi: 10.1016/j.snb.2015.08.087

    127. [127]

      Kim, H. Y.; Im, H. G.; Chang, S. K. Dyes Pigm. 2015, 112, 170.  doi: 10.1016/j.dyepig.2014.06.030

    128. [128]

      Wang, Z.-Y.; Li, J.-N.; Zhao, Y.-M. Green Chemistry General Course, China Textile Press, Beijing, 2007 (in Chinese).

    129. [129]

      Wu, Y.-C.; Huo, J.-P.; Cao, L.; Ding, S.; Wang, L.-Y.; Cao, D.-R.; Wang, Z.-Y. Sens. Actuators 2016, 237, 865.  doi: 10.1016/j.snb.2016.07.028

    130. [130]

      Yang, K.; Wang, Z.-Y.; Fu, J.-H.; Tan, Y.-H. Prog. Chem. 2010, 22, 2126 (in Chinese).
       

  • 加载中
    1. [1]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    2. [2]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    3. [3]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    4. [4]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    5. [5]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    6. [6]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    7. [7]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    8. [8]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    9. [9]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    10. [10]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    11. [11]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    12. [12]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    13. [13]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    14. [14]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    15. [15]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    16. [16]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    17. [17]

      Yunchao Li Shanying Chen Ke Qi Kangning Huo Shuxin Li Jingyi Li Ying Wei Louzhen Fan . A New Colloid Electrophoresis Experiment Incorporating Characteristics of Inquiry Learning and Ideological and Political Education. University Chemistry, 2024, 39(2): 47-51. doi: 10.3866/PKU.DXHX202308063

    18. [18]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    19. [19]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    20. [20]

      Yiming Lu Xiang Xie Xiaoqing Qiu Yang Liu Xinyuan Cheng . The New Year’s Eve of the Aviation Brake Material Family. University Chemistry, 2024, 39(9): 203-207. doi: 10.12461/PKU.DXHX202403061

Metrics
  • PDF Downloads(0)
  • Abstract views(4742)
  • HTML views(520)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return