Citation: Liang Ting, Li Jun, Liu Yu, Wu Caixia, Wang Jing, Lan Jinping, Liu Kai-yang. Progress in the Synthesis of 2, 3-Disubstituted Indole by Cyclization[J]. Chinese Journal of Organic Chemistry, ;2016, 36(11): 2619-2633. doi: 10.6023/cjoc201605024 shu

Progress in the Synthesis of 2, 3-Disubstituted Indole by Cyclization

  • Corresponding author: Liang Ting, liangting666@163.com
  • Received Date: 16 May 2016
    Revised Date: 16 June 2016

Figures(14)

  • In recent years, there are many reports about the synthesis of 2, 3-disubstituted indole by cyclization. Most of these approaches are catalyzed by different transition metals and metal-free catalysis conditions using phenylnydrazines, anilines and nitrobenzenes as main substrates. These methods have been a powerful strategy to obtain 2, 3-disubstituted indoles. The recent progress of the synthesis of 2, 3-disubstituted indoles by cyclization with the different substrates systems is summarized.
  • 加载中
    1. [1]

      Fischer, E.; Jourdan, F. Ber. 1883, 16, 2241.  doi: 10.1002/(ISSN)1099-0682

    2. [2]

      Malleron, J. L.; Gueremy, C.; Mignani, S.; Peyronel, J. F.; Truchon, A.; Blanchard, J. C.; Doble, A.; Laduron, P.; Piot, O. J. Med. Chem. 1993, 36, 1194.  doi: 10.1021/jm00061a010

    3. [3]

      Yutaka, A.; Toshihiko, M.; Akihiro, O. Tetrahedron Lett. 1996, 37, 9203.  doi: 10.1016/S0040-4039(96)02134-X

    4. [4]

      Nicolaou, K. C.; Lee, S. H.; Estrada, A. A.; Zak, M. Angew. Chem., Int. Ed. 2005, 44, 3736.  doi: 10.1002/(ISSN)1521-3773

    5. [5]

      Narkowicz, C. K.; Blackman, A. J.; Lacey, E.; Gill, J. H.; Hei-land, K. J. Nat. Prod. 2002, 65, 938.  doi: 10.1021/np010574x

    6. [6]

      Ren, J.-Q.; Fan, H.-D. Chin. J. Hosp. Pharm. 1993, 13, 492 (in Chinese).
       

    7. [7]

      Hughes, D. L.; Zhao, D. J. Org. Chem. 1993, 58, 228.  doi: 10.1021/jo00053a041

    8. [8]

      Nefzi, A.; Ostresh, J. M.; Houghten, R. A. Chem. Rev. 1997, 97, 449.  doi: 10.1021/cr960010b

    9. [9]

      Thompson, L. A. Curr. Opin. Chem. Biol. 2000, 4, 324.  doi: 10.1016/S1367-5931(00)00096-X

    10. [10]

      Liu, K.-G.; Robichaud, A. J.; Lo, J. R.; Mattes, J. F.; Cai, Y.-X.; Org. Lett. 2006, 8, 5769.  doi: 10.1021/ol0623567

    11. [11]

      Dykstra, K. D.; Guo, L.-Q.; Birzin, E. T.; Chan, W.-D.; Yang, Y.-T.; Hayes, E. C.; DaSilva, C. A.; Pai, L. Y.; Mosley, R. T.; Kraker, B.; Fitzgerald, P. M. D.; DiNinno, F.; Rohrer, S. P.; Schaeffer, J. M.; Hammond, M. L. Bioorg. Med. Chem. Lett. 2007, 17, 2322.  doi: 10.1016/j.bmcl.2007.01.054

    12. [12]

      Xu, D.-Q.; Yang, W.-L.; Luo, S.-P.; Wang, B.-T.; Wu, -J.; Xu, Z. -Y. Eur. J. Org. Chem. 2007, 1007.

    13. [13]

      Muzalevskiy, V. M.; Nenajdenko, V. G.; Shastin, A. V.; Balenkova, E. S.; Haufe, G. Tetrahedron 2009, 65, 7553.  doi: 10.1016/j.tet.2009.06.120

    14. [14]

      Patil, N. T.; Konala, A. Eur. J. Org. Chem. 2010, 6831.

    15. [15]

      Li, B.-L.; Xu, D.-Q.; Zhong, A.-G. J. Flurine Chem. 2012, 144, 45.  doi: 10.1016/j.jfluchem.2012.09.010

    16. [16]

      Siddalingamurthy, E.; Mahadevan, K. M.; Masagalli, J. N.; Ha-rishkumar, H. N. Tetrahedron Lett. 2013, 54, 5591.  doi: 10.1016/j.tetlet.2013.07.157

    17. [17]

      Laube, M.; Tondera, C.; Sharma, S. K.; Bechmann, N.; Pietzsch, F. J.; Pigorsch, A.; Koeckerling, M.; Wuest, F.; Pietzsch, J.; Kniess, T. RSC Adv. 2014, 4, 38726.  doi: 10.1039/C4RA05650G

    18. [18]

      Gore, S.; Baskaran, S.; König, B. Org. Lett. 2012, 14, 4568.  doi: 10.1021/ol302034r

    19. [19]

      Zhang, H.; Hu, R.-B.; Liu, N.; Li, S.-X. Yang, S.-D. Org. Lett. 2016, 18, 28.  doi: 10.1021/acs.orglett.5b03053

    20. [20]

      Pews-Davtyan, A.; Tillack, A.; Schmoele, A. C.; Ortinau, S.; Frech, M. J.; Rolfs, A.; Beller, M. Org. Biomol. Chem. 2010, 8, 1149.  doi: 10.1039/b920861e

    21. [21]

      Pews-Davtyan, A.; Beller, M. Org. Biomol. Chem. 2011, 9, 6331.  doi: 10.1039/c1ob05576c

    22. [22]

      Gehrmann, T.; Lloret, F. J.; Scholl, S. A.; Wadepohl, H.; Gade, L. H. Angew. Chem., Int. Ed. 2011, 50, 5757.  doi: 10.1002/anie.201101070

    23. [23]

      Gehrmann, T.; Scholl, S. A.; Fillol, J. L.; Wadepohl, H.; Gade, L. H. Chem. Eur. J. 2012, 18, 3925.  doi: 10.1002/chem.v18.13

    24. [24]

      Matsuda, T.; Tomaru, Y. Tetrahedron Lett. 2014, 55, 3302.  doi: 10.1016/j.tetlet.2014.04.016

    25. [25]

      Zhou, B.; Du, J.-J.; Yang, Y.-X.; Li, Y.-C. Chem. Eur. J. 2014, 20, 12768.  doi: 10.1002/chem.201403973

    26. [26]

      Zhang, Z.-X; Jiang, H.; Huang, Y. Org. Lett. 2014, 16, 5976.  doi: 10.1021/ol502998n

    27. [27]

      Fan, Z.-L.; Song, S.-S.; Li, W.; Geng, K.-J.; Xu, Y.-J.; Miao, Z.-H.; Zhang, A. Org. Lett. 2015, 17, 310.  doi: 10.1021/ol503404p

    28. [28]

      Moballigh, A.; Ralf, J.; Majeed, S. A.; Holger, K.; Matthias, B. Tetrahedron Lett. 2004, 45, 869.  doi: 10.1016/j.tetlet.2003.11.044

    29. [29]

      Khedkar, V.; Tillack, A.; Michalik, M.; Beller, M. Tetrahedron Lett. 2004, 45, 3123.  doi: 10.1016/j.tetlet.2004.02.085

    30. [30]

      Li, D.-Y.; Chen, H.-J.; Liu, P.-N. Org. Lett. 2014, 16, 6176.  doi: 10.1021/ol5030794

    31. [31]

      Jiang, J.-Z.; Wang, Y. Chin. J. Org. Chem. 2006, 26, 1025 (in Chinese).
       

    32. [32]

      Tanaka, H.; Ohno, H.; Kawamura, K.; Ohtake, A.; Nagase, H.; Takahashi, T. Org. Lett. 2003, 5, 1159.  doi: 10.1021/ol020230d

    33. [33]

      Mun, H. S.; Ham, W. H.; Jeong, J. H. J. Comb. Chem. 2005, 7, 130.  doi: 10.1021/cc049922e

    34. [34]

      Tsuji, Y.; Huh, K. T.; Watanabe, Y. Tetrahedron Lett. 1986, 27, 377.  doi: 10.1016/S0040-4039(00)84023-X

    35. [35]

      Tursky, M.; Lorentz-Petersen, Linda L. R.; Olsen, L. B.; Madsen, R. Org. Biomol. Chem. 2010, 8, 5576.  doi: 10.1039/c0ob00106f

    36. [36]

      Zhang, M.; Xie, F.; Wang, X.-T.; Yan, F.-X.; Wang, T.; Chen, M.-M.; Ding, Y.-Q. RSC Adv. 2013, 3, 6022.  doi: 10.1039/c3ra40458g

    37. [37]

      Pena-Lopez, M.; Neumann, H.; Beller, M. Chem. Eur. J. 2014, 20, 1818.  doi: 10.1002/chem.v20.7

    38. [38]

      Tokunaga, M.; Ota, M.; Haga, M. A; Wakatsuki, Y. Tetrahedron Lett. 2001, 42, 3865.  doi: 10.1016/S0040-4039(01)00588-3

    39. [39]

      Kumar, M. P.; Liu, R.-S. J. Org. Chem. 2006, 71, 4951.  doi: 10.1021/jo0606711

    40. [40]

      Huestis, M. P.; Chan, L.; Stuart, D. R.; Fagnou, K. Angew. Chem., Int. Ed. 2011, 50, 1338.  doi: 10.1002/anie.v50.6

    41. [41]

      Kathiravana, S.; Nicholls, I. A. Chem. Commun. 2014, 50, 14964.  doi: 10.1039/C4CC06020B

    42. [42]

      Sagadevan, A.; Ragupathi, A.; Hwang, K. C. Angew. Chem., Int. Ed. 2015, 54, 13896.  doi: 10.1002/anie.201506579

    43. [43]

      Reddy, P. V.; Annapurna, M.; Srinivas, P.; Likhar, P. R.; Kantam, M. L. New J. Chem. 2015, 39, 3399.  doi: 10.1039/C5NJ00074B

    44. [44]

      Sharma, S.; Pathare, R. S.; Maurya, A. K.; Gopal, K.; Roy, T. K.; Sawant, D. M.; Pardasani, R. T. Org. Lett. 2016, 18, 356.  doi: 10.1021/acs.orglett.5b03185

    45. [45]

      Bard, R. R.; Bunnett, J. F. J. Org. Chem. 1980, 45, 1546.  doi: 10.1021/jo01296a052

    46. [46]

      Suzuki, H.; Thiruvikraman, S. V.; Osuka, A. Synthesis 1984, 616.

    47. [47]

      Chen, C.-Y.; Lieberman, D. R.; Larsen, R. D.; Verhoeven, T. R.; Reider, P. J. J. Org. Chem. 1997, 62, 2676.  doi: 10.1021/jo970278i

    48. [48]

      Naʐaré, M.; Schneider, C.; Lindenschmidt, A.; Will, D. W. Angew. Chem., Int. Ed. 2004, 43, 4526.  doi: 10.1002/(ISSN)1521-3773

    49. [49]

      Liu, X.-G.; Li, Z.-H.; Xie, J.-W.; Liu, P.; Zhang, J.; Dai, B. Tetrahedron. 2016, 72, 653.  doi: 10.1016/j.tet.2015.12.006

    50. [50]

      Wensbo, D.; Eriksson, A.; Jeschke, T.; Annby, U.; Gronowitz, S.; Cohen, L. A. Tetrahedron Lett. 1993, 34, 2823.  doi: 10.1016/S0040-4039(00)73572-6

    51. [51]

      Jeschke; W.; Annby, U.; Gronowitz, S.; Cohen, L. A. Tetrahedron Lett. 1993, 34, 6471.  doi: 10.1016/0040-4039(93)85073-6

    52. [52]

      Witulski, B.; Alayrac, C.; TevzadzeSaeftel, L. Angew. Chem., Int. Ed. 2003, 42, 4257.  doi: 10.1002/(ISSN)1521-3773

    53. [53]

      Lu, B. Z.; Wei, H.-X.; Zhang, Y.-D.; Zhao, W.-Y.; Dufour, M.; Li, G.-S.; Farina, V.; Senanayake, C. H. J. Org. Chem. 2013, 78, 4558.  doi: 10.1021/jo302679f

    54. [54]

      Hao, W.; Geng, W.-Z; Zhang, W.-X; Xi, Z.-F. Chem. Eur. J. 2014, 20, 2605.  doi: 10.1002/chem.v20.9

    55. [55]

      Johnson, F.; Subramanian, R. J. Org. Chem. 1986, 51, 5040.  doi: 10.1021/jo00375a063

    56. [56]

      Cui, S.-L.; Wang, J.; Wang, Y.-G. J. Am. Chem. Soc. 2008, 130, 13526.  doi: 10.1021/ja805706r

    57. [57]

      Saito, A.; Oda, S.; Fukaya, H.; Hanzawa, Y. J. Org. Chem. 2009, 74, 1517.  doi: 10.1021/jo8022523

    58. [58]

      Hayashi, S.; Ueno, N.; Murase, A.; Nakagawa, Y.; Takada, J. Eur. J. Med. Chem. 2012, 50, 179.  doi: 10.1016/j.ejmech.2012.01.053

    59. [59]

      Deng, G.-B.; Zhang, J.-L.; Liu, Y.-Y.; Liu, B.; Yang, X.-H.; Li, J.-H. Chem. Commun. 2015, 51, 1886.  doi: 10.1039/C4CC08498E

    60. [60]

      Nicolaou, K. C.; Lee, S. H.; Estrada, A. A.; Zak, M. Angew. Chem., Int. Ed. 2005, 44, 3736.  doi: 10.1002/(ISSN)1521-3773

    61. [61]

      Nicolaou, K. C.; Estrada, A. A.; Lee, S. H.; Freestone, G. C. Angew. Chem., Int. Ed. 2006, 45, 5364.  doi: 10.1002/(ISSN)1521-3773

    62. [62]

      Ragaini, F.; Rapetti, A.; Visentin, E.; Monzani, M.; Caselli, A.; Cenini, S. J. Org. Chem. 2006, 71, 3748.  doi: 10.1021/jo060073m

    63. [63]

      Penoni, A.; Nicholas, K. M. Chem. Commun. 2002, 484.

    64. [64]

      Wylie, L.; Innocenti, P.; Whelligan, D. K.; Hoelder, S. Org. Biomol. Chem. 2012, 10, 4441.  doi: 10.1039/c2ob25256b

    65. [65]

      Coffman, K. C.; Palazzo, T. A.; Hartley, T. P.; Fettinger, J. C.; Tantillo, D. J.; Kurth, M. J. Org. Lett. 2013, 15, 2062.  doi: 10.1021/ol400787y

    66. [66]

      Zhou, F.; Wang, D.-S.; Driver, T. G. Adv. Synth. Catal. 2015, 357, 3463.  doi: 10.1002/adsc.201500700

    67. [67]

      Penoni, A.; Volkmann, J.; Nicholas, K. M. Org. Lett. 2002, 4, 699.  doi: 10.1021/ol017139e

    68. [68]

      Murru, S.; Gallo, A. A.; Srivastava, R. S. Eur. J. Org. Chem. 2011, 2035.

    69. [69]

      Yan, H.; Wang, H.-L.; Li, X.-C.; Xin, X.-Y.; Wang, C.-X.; Wan, B.-S. Angew. Chem., Int. Ed. 2015, 54, 10613.  doi: 10.1002/anie.201503997

    70. [70]

      Zhou, Z.; Liu, G.-X.; Chen, Y.; Lu, X.-Y. Adv. Synth. Catal. 2015, 357, 2944.  doi: 10.1002/adsc.v357.13

    71. [71]

      Sharma, P.; Liu, R.-S. Org. Lett. 2016, 18, 412.  doi: 10.1021/acs.orglett.5b03447

    72. [72]

      Ross, R. A.; Brockie, H. C.; Stevenson, L. A.; Murphy, V. L.; Templeton, F.; Makriyannis, A.; Pertwee, R. G. Br. J. Pharmacol. 1999, 126, 665.
      (b) Dutta, A. K.; Ryan, W.; Thomas, B. F.; Singer, M.; Compton, D. R.; Martin, B. R.; Razdan, R. K. Bioorg. Med. Chem. 1997, 5, 1591.
      (c) Murataeva, N.; Mackie, K.; Straiker, A. Pharmacol. Res. 2, 66, 437.

    73. [73]

      Rainier, J. D.; Kennedy, A. R. J. Org. Chem. 2000, 65, 6213.  doi: 10.1021/jo000831n

    74. [74]

      Onitsuka, K.; Suzuki, S.; Takahashi, S. Tetrahedron Lett. 2002, 43, 6197.  doi: 10.1016/S0040-4039(02)01316-3

    75. [75]

      Tobisu, M.; Fujihara, H.; Koh, K.; Chatani, N. J. Org. Chem. 2010, 75, 4841.  doi: 10.1021/jo101024f

    76. [76]

      Nanjo, T.; Yamamoto, S.; Tsukano, C.; Takemoto, Y. Org. Lett. 2013, 15, 3754.  doi: 10.1021/ol4016699

    77. [77]

      Zhang, B.; Studer, A. Org. Lett. 2014, 16, 1216.  doi: 10.1021/ol5001395

    78. [78]

      Wetzel, A.; Gagosʐ, F. Angew. Chem., Int. Ed. 2011, 50, 7354.  doi: 10.1002/anie.v50.32

    79. [79]

      Lu, B.; Luo, Y.-D.; Liu, L.-Z.; Ye, L.-W.; Wang, Y.-Z.; Zhang, L.-M. Angew. Chem., Int. Ed. 2011, 50, 8358.  doi: 10.1002/anie.v50.36

    80. [80]

      Kong, C.; Jana, N.; Driver, T. G. Org. Lett. 2013, 15, 824.  doi: 10.1021/ol400137q

    81. [81]

      Abaev, V. T.; Plieva, A. T.; Chalikidi, P. N.; Uchuskin, M. G.; Trushkov, I. V.; Butin, A. V. Org. Lett. 2014, 16, 4150.  doi: 10.1021/ol5018504

    82. [82]

      Phillips, R. M.; Hendriks, H. R.; Peters, G. J. Br. J. Pharmacol. 2013, 168, 11.  doi: 10.1111/j.1476-5381.2012.01996.x

    83. [83]

      Asberg, A.; Holdaas, H. Expert Rev. Cardiovasc. Ther. 2004, 2, 641.
      (b) Zacharia, J. T.; Tanaka, T.; Hayashi, M. J. Org. Chem. 2010, 75, 7514.

    84. [84]

      Chen, K.; Zhu, Z.-Z.; Liu, J.-X.; Tang, X.-Y.; Wei, Y.; Shi, M. Chem. Commun. 2015, 52, 350.

    85. [85]

      Kamijo, S.; Yamamoto, Y. Angew. Chem., Int. Ed. 2002, 41, 3230.  doi: 10.1002/1521-3773(20020902)41:17<>1.0.CO;2-C

    86. [86]

      Haag, B. A.; Zhang, Z.-G.; Li, J.-S.; Knochel, P. Angew. Chem., Int. Ed. 2010, 49, 9513.  doi: 10.1002/anie.201005319

    87. [87]

      Wang, H.-B.; Mudraboyina, B. P.; Wisner, J. A. Chem. Eur. J. 2012, 18, 1322.  doi: 10.1002/chem.v18.5

    88. [88]

      Matcha, K.; Antonchick, A. P. Angew. Chem., Int. Ed. 2014, 53, 11960.  doi: 10.1002/anie.201406464

    89. [89]

      Dawande, S. G.; Kanchupalli, V.; Kalepu, J.; Chennamsetti, H.; Lad, B. S.; Katukojvala, S. Angew. Chem., Int. Ed. 2014, 53, 4076.  doi: 10.1002/anie.201400161

    90. [90]

      Martins, G. M.; Zeni, G.; Back, D. F.; Kaufman, T. S.; Silveira, C. C. Adv. Synth. Catal. 2015, 357, 3255.  doi: 10.1002/adsc.201500275

    91. [91]

      Tanaka, M.; Li, X.; Hikawa, H.; Suzuki, T.; Tsutsumi, K.; Sato, M.; Takikawa, O.; Suzuki, H.; Yokoyama, Y. Bioorg. Med. Chem. 2013, 21, 1159.
      (b) Chand, P.; Chesney, J. A.; Clem, B. F.; Tapolsky, G. H.; Tel-ang, S.; Trent, J. O. WO 2011/103557, 2011[Chem. Abstr. 2011, 155, 371778].
      (c) Kai, M.; Noda, A.; Noda, H.; Goto, S. Chem. Pharm. Bull. 1988, 36, 3604.

    92. [92]

      Neo, A. G.; Lypez, C.; Lypez, A.; Castedo, L.; Tojo, G. Tetrahedron 2013, 69, 11010.
      (b) Tietze, L.; von Hof, J. M. WO 2011/054837, 2011[Chem. Abstr. 2011, 154, 565441].
      (c) Jones, G. B.; Mathews, J. E. Tetrahedron. 1997, 53, 14599.

    93. [93]

      Nakamura, L.; Nemoto, T.; Shiraiwa, N.; Terada, M. Org. Lett. 2009, 11, 1055.  doi: 10.1021/ol900113f

    94. [94]

      Cai, Q.; Li, Z.-Q.; Wei, J.-J; Ha, C.-Y.; Pei, D.-Q.; Ding, K. Chem. Commun. 2009, 7581.

    95. [95]

      Zhang, Y.-H.; Liu, S.; Yu, W.-W.; Hu, M.; Zhang, G.-L.; Yu, Y.-P. Tetrahedron 2013, 69. 2070.  doi: 10.1016/j.tet.2012.11.062

    96. [96]

      Goriya, Y.; Ramana, C. V. Chem. Commun. 2014, 50, 7790.  doi: 10.1039/c4cc02501f

    97. [97]

      Novikov, M. S.; Khlebnikov, A. F.; Rostovskii, N. V.; Tcyrulnikov, S.; Suhanova, A. A.; Zavyalov, K. V.; Yufit, D. S. J. Org. Chem. 2015, 80, 18.  doi: 10.1021/jo501051n

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    5. [5]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    6. [6]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    7. [7]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    8. [8]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    9. [9]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    10. [10]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    11. [11]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    12. [12]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    13. [13]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    14. [14]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    15. [15]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    16. [16]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    17. [17]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    18. [18]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    19. [19]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    20. [20]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

Metrics
  • PDF Downloads(0)
  • Abstract views(1408)
  • HTML views(199)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return