Citation: Guan Chaojian, Wang Tao, Wang Jun, Li Yiming. Synthesis of Post-translational Modifier Protein NEDD8 via Ligation of Peptide Hydrazides[J]. Chinese Journal of Organic Chemistry, ;2016, 36(11): 2763-2768. doi: 10.6023/cjoc201605013 shu

Synthesis of Post-translational Modifier Protein NEDD8 via Ligation of Peptide Hydrazides

  • Corresponding author: Wang Jun, wangjun-08@126.com Li Yiming, lym2007@mail.ustc.edu.cn
  • Received Date: 10 May 2016
    Revised Date: 8 June 2016

    Fund Project: National Natural Science Foundation of China 21572043National Natural Science Foundation of China 21372058

Figures(8)

  • As an important ubiquitin-like modifier protein in eukaryotic organisms, NEDD8 (neural precursor cell expressed developmentally down-regulated 8) is involved in regulating a series of important life processes in cells. Nowadays, the major method for obtaining NEDD8 is recombinant protein expression. However, the yield is relatively low and the recombined tag for purification needs to be removed in an extra step. In present work, NEDD8 protein was first synthesized in homogeneity by using high temperature assisted solid-phase peptide synthesis (SPPS) combining with the one-pot ligation-desulfurization strategy. This method lays the foundation for the study of NEDD8 modified proteins in future.
  • 加载中
    1. [1]

      Pickart, C. M.; Eddins, M. J. Biochim. Biophys. Acta 2004, 1695, 55.
      (b) Pickart, C. M.; Fushman, D. Curr. Opin. Chem. Biol. 2004, 8, 610.

    2. [2]

      Matunis, M. J.; Coutavas, E.; Blobel, G. J. Cell Biol. 1997, 135, 1457.
      (b) Kumar, S.; Yoshida, Y.; Noda, M. Biochem. Biophys. Res. Commun. 1993, 195, 393.

    3. [3]

      Hochstrasser, M. Cell 2006, 124, 27.
      (b) Pickart, C. M. Cell 2004, 116, 181.

    4. [4]

      Pan, Z. Q.; Kentsis, A.; Dias, D. C.; Yamoah, K.; Wu, K. Oncogene 2004, 23, 1985.  doi: 10.1038/sj.onc.1207414

    5. [5]

      Duda, D. M.; Borg, L. A.; Scott, D. C.; Hunt, H. W.; Hammel, M.; Schulman, B. A. Cell 2008, 134, 995.
      (b) Scott, D. C.; Sviderskiy, V. O.; Monda, J. K.; Lydeard, J. R.; Cho, S. E.; Harper, J. W.; Schulman, B. A. Cell 2014, 157, 1671.
      (c) Cavadini, S.; Fischer, E. S.; Bunke, R. D.; Potenza, A.; Lingaraju, G. M.; Goldie, K. N.; Mohamed, W. I.; Faty, M.; Petzold, G.; Beckwith, R. E. J.; Tichkule, R. B.; Hassiepen, U.; Abdulrahman, W.; Pantelic, R. S.; Matsumoto, S.; Sugasawa, K.; Stahlberg, H.; Thomä, N. H. Nature 2016, 531, 598.

    6. [6]

      Singh, R. K.; Zerath, S.; Kleifeld, O.; Scheffner, M.; Glickman, M. H.; Fushman, D. Mol. Cell. Proteomics 2012, 11, 1595.  doi: 10.1074/mcp.M112.022467

    7. [7]

      Stickle, N. H.; Chung, J.; Klco, J. M.; Hill, R. P.; Kaelin, W. G. Jr.; Ohh, M. Mol. Cell. Biol. 2004, 24, 3251.
      (b) Harper, J. Cell 2004, 118, 2.
      (c) Xirodimas, D. P.; Saville, M. K.; Bourdon, J. C.; Hay, R. T.; Lane, D. P. Cell 2004, 118, 83.
      (d) Xirodimas, D. P.; Sundqvist, A.; Nakamura, A.; Shen, L.; Botting, C.; Hay, R. T. EMBO Rep. 2008, 9, 280.
      (e) Broemer, M.; Tenev, T.; Rigbolt, K. T. G.; Hempel, S.; Blagoev, B.; Silke, J.; Ditzel, M.; Meier, P. Mol. Cell 2010, 40, 810.
      (f) Benjamin, S.; Steller, H. Dev. Cell 2010, 19, 791.

    8. [8]

      Xirodimas, D. P.; Sundqvist, A.; Nakamura, A.; Shen, L.; Botting, C.; Hay, R. T. EMBO Rep. 2008, 9, 280.
      (b) Jones, J.; Wu, K.; Yang, Y. Y.; Guerrero, C.; Nillegoda, N.; Pan, Z. Q.; Lan, H. J. Proteome Res. 2008, 7, 1274.

    9. [9]

      Jbara, M.; Maity, S. K.; Seenaiah, M.; Brik, A. J. Am. Chem. Soc. 2016, 138, 5069.  doi: 10.1021/jacs.5b13580

    10. [10]

      Kent, S. B. H. Chem. Soc. Rev. 2009, 38, 338.
      (b) Raibaut, L.; Ollivier, N.; Melnyk, O. Chem. Soc. Rev. 2012, 41, 7001.
      (c) Huang, Y. C.; Liu, L. Sci. China Chem. 2015, 58, 1779.
      (d) Huang, Y. C.; Fang, G. M.; Liu, L. Natl. Sci. Rev. 2016, 3, 107.
      (e) Liu, H.; Li, X. C. Org. Biomol. Chem. 2014, 12, 3768.

    11. [11]

      Fang, G. M.; Li, Y. M.; Huang, Y. C.; Li, J. B.; Cui, H. K.; Liu, L. Angew. Chem., Int. Ed. 2011, 50, 7645.
      (b) Fang, G.-M.; Wang, J.-X.; Liu, L. Angew. Chem., Int. Ed. 2012, 51, 10347.
      (c) Tang, S.; Si, Y. Y.; Wang, Z. P.; Mei, K. R.; Chen, X.; Cheng, J. Y.; Zheng, J.-S.; Liu, L. Angew. Chem., Int. Ed. 2015, 54, 5713.
      (d) Wang, J. X.; Fang, G. M.; He, Y.; Qu, D. L.; Yu, M.; Hong, Z. Y.; Liu, L. Angew. Chem., Int. Ed. 2015, 54, 2194.
      (e) Zheng, J. S.; Yu, M.; Qi, Y. K.; Tang, S.; Shen, F.; Wang, Z. P.; Xiao, L.; Zhang, L.; Tian, C. L.; Liu, L. J. Am. Chem. Soc. 2014, 136, 3695.
      (f) Zheng, J.-S.; He, Y.; Zuo, C.; Cai, X.-Y.; Tang, S.; Wang, Z. A.; Zhang, L.-H.; Tian, C.-L.; Liu, L. J. Am. Chem. Soc. 2016, 138, 3553.

    12. [12]

      Huang, Y. C.; Guan, C. J.; Tan, X. L.; Chen, C. C.; Guo, Q. X.; Li, Y. M. Org. Biomol. Chem. 2015, 13, 1500.  doi: 10.1039/C4OB02260B

    13. [13]

      Huang, Y. C.; Chen, C. C.; Gao, S.; Wang, Y. H.; Xiao, H.; Wang, F.; Tian, C. L.; Li, Y. M. Chem. Eur. J. 2016, 22, 7623.  doi: 10.1002/chem.v22.22

    14. [14]

      Kochendoerfer, G. G.; Kent, S. B. H. Curr. Opin. Chem. Biol. 1999, 3, 665.  doi: 10.1016/S1367-5931(99)00024-1

    15. [15]

      Miller, M.; Schneider, J.; Sathyanarayana, B. K.; Toth, M. V.; Marshall, G. R.; Clawson, L.; Selk, L.; Kent, S. B. H.; Wlodawer, A. Science 1989, 246, 1149.
      (b) Deng, F. K.; Zhang, L.; Wang, Y. T.; Schneewind, O.; Kent, S. B. H. Angew. Chem., Int. Ed. 2014, 53, 4662.

    16. [16]

      Zheng, J. S.; Tang, S.; Huang, Y. C.; Liu, L. Acc. Chem. Res. 2013, 46, 2475.
      (b) Zheng, J. S.; Tang, S.; Qi, Y. K.; Wang, Z. P.; Liu, L. Nat. Protoc. 2013, 8, 2483.
      (c) Li, J. B.; Li, Y. Y.; He, Q. Q.; Li, Y. M.; Li, H. T.; Liu, L. Org. Biomol. Chem. 2014, 12, 5435.
      (d) Chen, C. C.; Li, S. J.; Chen, Y. Q.; Xu, H. J.; Li, Y. M. Chin. J. Org. Chem. 2014, 34, 1452.
      (e) Li, Y. M.; Li, Y. T.; Pan, M.; Kong, X. Q.; Huang, Y. C.; Hong, Z. Y.; Liu, L. Angew. Chem., Int. Ed. 2014, 53, 2198.

  • 加载中
    1. [1]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    2. [2]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    3. [3]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    4. [4]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    5. [5]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    6. [6]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    7. [7]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    8. [8]

      Xiaojun Wu Kai Hu Faqiong Zhao . Laying the Groundwork for General Chemistry Experiment Teaching: Exploration and Summary of Assisting Experiment Preparatory Work through Online and Offline Integration. University Chemistry, 2024, 39(8): 23-27. doi: 10.3866/PKU.DXHX202312052

    9. [9]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    10. [10]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    11. [11]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    12. [12]

      Zhi WangLingpeng YanYelin HaoJingxia ZhengYongzhen YangXuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430

    13. [13]

      . . University Chemistry, 2024, 39(8): 0-0.

    14. [14]

      . 第41卷第8期封面和目次. Acta Physico-Chimica Sinica, 2025, 41(8): -.

    15. [15]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    16. [16]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    17. [17]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    18. [18]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    19. [19]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    20. [20]

      Liuxie Liu Jing He Jiali Du Shuang Mao Qianggen Li . Extension of Computational Chemical-Assisted Dipole Moment Measurement Experiment. University Chemistry, 2025, 40(3): 363-370. doi: 10.12461/PKU.DXHX202407108

Metrics
  • PDF Downloads(0)
  • Abstract views(1834)
  • HTML views(318)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return