Citation: Ao Yufei, Wang Qiqianga, Wang Dexiana. Biocatalytic Desymmetrization of Dinitriles in Organic Synthesis[J]. Chinese Journal of Organic Chemistry, ;2016, 36(10): 2333-2343. doi: 10.6023/cjoc201605009 shu

Biocatalytic Desymmetrization of Dinitriles in Organic Synthesis

  • Corresponding author: Ao Yufei, aoyufe@iccas.ac.cn
  • Received Date: 9 May 2016
    Revised Date: 11 June 2016

    Fund Project: Project supported by the National Natural Science Foundation of China No. 21502202

Figures(14)

  • In comparison with the chemical hydration and hydrolysis of nitriles, which usually involves harsh reaction condi-tions and low selectivity, biocatalytic desymmetrizations of prochiral or meso nitriles are highly efficient, highly enantioselective and environmentally benign. Therefore, biocatalysis and biotransformation has offered an attractive and unique protocol for the enantioselective synthesis of polyfunctionalized organic compounds that are not readily obtainable by other methods. This review summarizes the biocatalytic desymmetrization of prochiral nitriles including glutaronitriles, malonitriles and meso cyclic dinitriles during the past two decades.
  • 加载中
    1. [1]

    2. [2]

      Rappoport, Z.; Patai, S. The Chemistry of Functional Groups, The Chemistry of the Cyano Group, Wiley, London, 1970.

    3. [3]

      Evgred, D.; Harnett, S. Cyanide Compounds in Biology (Ciba Foundation Symposium 140), Wiley, Chichester, 1998. (b) Jallageas, J.-C.; Arnaud, A.; Galzy, P. Adv. Biochem. Eng. 1980, 12, 1. (c) Legras, J.-L.; Chuzel, G.; Arnaud, A.; Galzy, P. World J. Microbiol. Biotechnol. 1990, 6, 83.

    4. [4]

      Harper, D. B. Biochem. Soc. Trans. 1976, 4, 502. (b) Harper, D. B. Biochem. J. 1977, 165, 309. (c) Kobayashi, M.; Shimizu, S. FEBS Microbiol Lett. 1994, 120, 217. 

    5. [5]

      Asano, Y.; Tani, Y.; Yamada, H. Agric. Biol. Chem. 1980, 44, 2251. (b) Asano, Y.; Tachibana, Y.; Tani, Y.; Yamada, H. Agric. Biol. Chem. 1982, 46, 1175.

    6. [6]

      Brenner, C. Curr. Opin. Struct. Biol. 2002, 12, 775. (b) Liu, Z. -Q.; Dong, L. -Z.; Cheng, F.; Xue, Y. -P.; Wang, Y. -S.; Ding, J. -N.; Zheng, Y. -G.; Shen, Y. -C. J. Agric. Food Chem. 2011, 59, 11560. 

    7. [7]

      Mascharak, P. K. Coord. Chem. Rev. 2002, 225, 201. (b) Song, L. Y.; Wang, M. Z.; Shi, J. J.; Xue, Z. Q.; Wang, M. -X.; Qian, S. J. Biochem. Biophy. Res. Commun. 2007, 362, 319. 

    8. [8]

      Fournand, D.; Arnaud, A. J. Appl. Microbiol. 2001, 91, 381. (b) Ohtaki, A.; Murata, K.; Sato, Y.; Noguchi, K.; Miyatake, H.; Dohmae, N.; Yamada, K.; Yohda, M.; Odaka, M. Biochim. Biophys. Acta 2010, 1804, 184. 

    9. [9]

      Sugai, T.; Yamazaki, T.; Yokoyama, M.; Ohta, H. Biosci. Biotechnol. Biochem. 1997, 61, 1419. (b) Martínková, L.; Křen, V. Biocatal. Biotrans. 2002, 20, 73. (c) Banerjee, A.; Sharma, R. Banerjee, U. C. Appl. Microbiol. Biotechnol. 2002, 60, 33. (d) Wang, M.-X. Top. Catal. 2005, 35, 117. (e) Martínková, L.; Uhnáková, B.; Pátek, M.; Nešvera, J.; Křen, V. Rhodococcus. Environ. Int. 2009, 35, 162. (f) Wang, M.-X. Chimia 2009, 63, 331. (g) Prasad, S.; Bhalla, T. C. Biotechnol. Adv. 2010, 28, 725; (h) Velankar, H.; Clarke, K. G.; du Preez, R.; Cowan, D. A.; Burton, S. G. Trends Biotechnol. 2010, 28, 561. (i) Wang, M.-X. Top. Organomet. Chem. 2011, 36, 105. (j) Ramteke, P. W.; Maurice, N. G.; Joseph, B.; Wadher, B. J. Biotechnol. Appl. Biochem. 2013, 60, 459. (k) Wang, M.-X. Acc. Chem. Res. 2015, 48, 602. 

    10. [10]

      Garcia-Urdiales, E.; Alfonso, I.; Gotor, V. Chem. Rev. 2005, 105, 313. (b) Palomo, J. M.; Cabrera, Z. Curr. Org. Synth. 2012, 9, 791.

    11. [11]

      Kakya, H.; Sakai, N.; Yokoyama, M.; Sugai, T.; Ohta, H. Chem. Lett. 1991, 1823.

    12. [12]

      Crosby, J. A.; Parratt, J. S.; Turner, N. J. Tetrahedron:Asymmetry 1992, 3, 1547. (b) Beard, T.; Cohen, M. A.; Parratt, J. S.; Turner, N. J.; Crosby, J.; Moilliet, N. J. Tetrahedron:Asymmetry 1993, 4, 1085. 

    13. [13]

      Wang, M.-X.; Liu, C.-S.; Li, J.-S. Meth-Cohn, O. Tetrahedron Lett. 2000, 41, 8549. (b) Wang, M.-X.; Liu, C.-S.; Li, J.-S. Tetrahedron:Asymmetry 2002, 12, 3367.

    14. [14]

      Vink, M. K. S.; Schortinghuis, C. A.; Luten, J.; van Maarseveen, J. H.; Schoemaker, H. E.; Hiemstra, H.; Rutjes, F. P. J. T. J. Org. Chem. 2002, 67, 7869. 

    15. [15]

      Santis, D. G.; Zhu, Z. L.; Greenberg, W. A.; Wong, K.; Chaplin, J.; Hanson, S. R.; Farwell, B.; Nicholson, L. W.; Rand, C. L.; Weiner, D. P.; Robertson, D. E.; Burk, M. J. J. Am. Chem. Soc. 2002, 124, 9024. (b) Santis, D. G.; Wong, K.; Farwell, B.; Chatman, K.; Zhu, Z. L.; Tomlinson, G.; Huang, H.; Tan, X.; Bibbs, L.; Chen, P.; Kretz, K.; Burk, M. J. J. Am. Chem. Soc. 2003, 125, 11476. 

    16. [16]

      Bergeron, S.; Chaplin, D. A.; Edwards, J. H.; Ellis, B. S. W.; Hill, C. L.; Karen, H.-T.; Knight, J. R.; Mahoney, T.; Osborne, A. P.; Ruecroft, G. Org. Process Res. Dev. 2006, 10, 661. 

    17. [17]

      Kinfe, H. H.; Chhiba, V.; Frederick, J.; Bode, M. L.; Mathiba, K.; Steenkamp, P. A.; Brady, D. J. Mol. Catal. B:Enzym. 2009, 59. 231.

    18. [18]

    19. [19]

      Duan, Y. T.; Yao, P. Y.; Ren, J.; Han, C.; Li, Q.; Yuan, J.; Feng, J. H.; Wu, Q. Q.; Zhu, D. M. Sci. Chin. Chem. 2014, 57, 1164. 

    20. [20]

      Nojiri, M.; Uekita, K.; Ohnuki, M.; Taoka, N.; Yasohara, Y. J. Appl. Microbiol. 2013, 115, 1127. 

    21. [21]

      Yokoyama, M.; Sugai, T.; Ohta, H. Tetrahedron:Asymmetry 1993, 4, 1081. 

    22. [22]

      Yokoyama, M.; Kashiwagi, M.; Iwasaki, M.; Fuhshuku, K.; Ohta, H.; Sugai, T. Tetrahedron:Asymmetry 2004, 15, 2817.

    23. [23]

      Wu, Z. -L.; Li, Z. -Y. Chem. Commun. 2003, 386. (b) Wu, Z. -L.; Li, Z. -Y. J. Org. Chem. 2003, 68, 2479. (c) Wu, Z. -L.; Li, Z. -Y. Tetrahedron:Asymmetry 2003, 14, 2133.

    24. [24]

      Vink, M. K. S.; Wijtmans, R.; Reisinger, C.; Berg, R. J. F.; Schortinghuis, C. A.; Schwab, H.; Schoemaker, H. E.; Rutjes, F. P. J. T. Biotechnol. J. 2006, 1, 569. 

    25. [25]

      Zhang, L.-B.; Wang, D.-X.; Wang, M.-X. Tetrahedron 2011, 67, 5604.

    26. [26]

      Zhang, L.-B.; Wang, D.-X.; Zhao, L.; Wang, M.-X. J. Org. Chem. 2012, 77, 5584.

    27. [27]

      Matoishi, K.; Sano, A.; Imai, N.; Yamazaki, T.; Yokoyama, M.; Sugai, T.; Ohta, H. Tetrahedron:Asymmetry 1998, 9, 1097.

    28. [28]

      Chen, P.; Gao, M.; Wang, D.-X.; Zhao, L.; Wang, M.-X. Chem. Common. 2012, 48, 3482. (b) Chen, P.; Gao, M.; Wang, D.-X.; Zhao, L.; Wang, M.-X. J. Org. Chem. 2012, 77, 4063.

    29. [29]

      Ao, Y.-F.; Wang, D.-X.; Zhao, L.; Wang, M.-X. Chem. Asian J. 2015, 10, 938.

    30. [30]

      Kielbasinski, P.; Rachwalski, M.; Mikolajczyk, M.; Szyrej, M.; Wieczorek, M. W.; Wijtmans, R.; Rutjes, F. P. J. T. Adv. Synth. Catal. 2007, 349,1387. (b) Kielbasinski, P.; Rachwalski, M.; Kwiatkowska, M.; Mikolajczyk, M.; Wieczorek, M. W.; Szyrej, M.; Sieron, L.; Rutjes, F. P. J. T. Tetrahedron:Asymmetry 2007, 18, 2108. 

    31. [31]

      Fernandes, B. C. M.; Mateo, C.; Kiziak, C.; Chmura, A.; Wacker, J.; Rantwijk, F. V.; Stolz, A.; Sheldon, R. A. Adv. Synth. Catal. 2006, 348, 2597. 

  • 加载中
    1. [1]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    2. [2]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    3. [3]

      Yucai Zhang Jun Jiang . Electrochemical Carbon Dioxide Reduction to Ethylene. University Chemistry, 2026, 41(2): 190-196. doi: 10.12461/PKU.DXHX202503006

    4. [4]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    5. [5]

      Hongyi Zhang Zhihong Shi Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030

    6. [6]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    7. [7]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Hailian Cheng Shuaiqiang Jia Chunjun Chen Haihong Wu Buxing Han . Electrocatalytic CO2 Conversion: A Key to Unlocking a Low-Carbon Future. University Chemistry, 2026, 41(2): 1-13. doi: 10.12461/PKU.DXHX202502023

    9. [9]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    10. [10]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    11. [11]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    12. [12]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    13. [13]

      Xinyan Chen Meng Xiao Fei Cai Junxian Guo Tianfeng Chen Li Ma . Transformation of Scientific Research Achievements Facilitating the Construction of Experimental Courses in Frontier Interdisciplinary Disciplines: A Case of “Comprehensive Experiments in Chemical Biology”. University Chemistry, 2025, 40(7): 373-379. doi: 10.12461/PKU.DXHX202408105

    14. [14]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    15. [15]

      Fangfang Chen Haiming Fan Yan Li Yuan He . 化学生物学专业多元化人才培养导向的课程体系优化探索. University Chemistry, 2025, 40(8): 92-99. doi: 10.12461/PKU.DXHX202409108

    16. [16]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    17. [17]

      Zhenhuan WangWeifei WeiRuijie MaDou LuoZhanxiang ChenJun ZhangLiyang YuGang LiZhenghui Luo . 苯并[a]苯嗪受体的核心氰基化实现高效(19.04%)绿色溶剂加工的二元有机太阳能电池. Acta Physico-Chimica Sinica, 2026, 42(2): 100182-0. doi: 10.1016/j.actphy.2025.100182

    18. [18]

      Yuai Duan Xuanyu Gan Yao Fu Yingjie Cao Hongliang Han Zhanfang Ma . Application and Innovative Design of Digital Technology in the Preparation Experiment of Cis(Trans)-Diglycine Copper Complexes. University Chemistry, 2026, 41(1): 373-381. doi: 10.12461/PKU.DXHX202504048

    19. [19]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    20. [20]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

Metrics
  • PDF Downloads(0)
  • Abstract views(2200)
  • HTML views(482)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return