Citation: Li Guocheng, Yang Aimei, Mao Zhuoya, Zhou Zhu, Wei Bangguo. Effective Method for Synthesis of Antipsychotics (2S, 3S)-Nemonapride[J]. Chinese Journal of Organic Chemistry, ;2016, 36(9): 2157-2161. doi: 10.6023/cjoc201604030 shu

Effective Method for Synthesis of Antipsychotics (2S, 3S)-Nemonapride

  • Corresponding author: Wei Bangguo, bgwei1974@fudan.edu.cn
  • Received Date: 14 April 2016
    Revised Date: 26 April 2016

    Fund Project: the National Natural Science Foundation of China 21472022the National Natural Science Foundation of China 21272041the National Natural Science Foundation of China 21072034

Figures(3)

  • An efficient method for the preparation of (4S, 5R)-4-(tert-butyldimethylsilyloxy)-5-methylpyrrolidin-2-one (1) by an addition-cyclization-deprotection process of the imine (R, SRS)-8 with Grignard reagent is described. (2S, 3S)-Nemonapride, a commercial antipsychotics, was asymmetrically synthesized by a concise and effective route involving above one-pot intramo-lecular tandem protocol in 17% overall yield from 8.
  • 加载中
    1. [1]

      Omura, S.; Imamura, N.; Kawakita, N.; Mori, Y.; Yamazaki, Y.; Masuma, R.; Takahashi, Y.; Tanaka, H.; Huang, L.; Woodruff, H. J. Antibiot. 1986, 39, 1079.
      (b) Moore, M. L.; Bryan, W. M.; Fakhury, S. A.; Magaard, V. W.; Huffan, W. F.; Dayton, B. D.; Meek, T. K.; Hyland, L. J.; Dreyer, G. B.; Metcalf, B. W.; Gorniak, J. G.; Debouck, C. Biochem. Biophys. Res. Commun. 1989, 159, 420.
      (c) Williams, P. G.; Yoshida, W. Y.; Moore, R. E.; Paul, V. J. J. Nat. Prod. 2003, 66, 1006.
      (d) Sato, T.; Shibazaki, M.; Yamaguchi, H.; Abe, K.; Matsumoto, H.; Shimizu, M. J. Antibiot. 1994, 47, 588.
      (e) Lefranc-Jullien, S.; Lisowski, V.; Hernandez, J.-F.; Martinez, J.; Checler, F. Br. J. Pharmacol. 2005, 145, 228.
      (f) Oh, D.-C.; Strangman, W. K.; Kauffman, C. A.; Jensen, P. R.; Fenical, W. Org. Lett. 2007, 9, 1525.
      (g) Wang, X.-G.; Wang, A.-E.; Huang, P.-Q. Chin. Chem. Lett. 2014, 25, 193.

    2. [2]

      For the selected enantioselective synthesis of nemonaprode, see:
      (a) Shibuguchi, T.; Mihara, H.; Kuramochi, A.; Ohshima, T.; Shibasaki, M. Chem. Asian J. 2007, 2, 794.
      (b) Hoang, C. T.; Nguyen, V. H.; Alezra, V.; Kouklovsky, C. J. Org. Chem. 2008, 73, 1162.
      (c) Handa, S.; Gnanadesikan, V.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 4925.
      For the examples of enantioselective synthesis of intermediates, see:
      (d) Huang, P.-Q.; Wang, S.-L.; Ye, J.-L.; Ruan, Y.-P.; Huang, Y.-Q.; Zheng, H.; Gao, J.-X. Tetrahedron 1998, 54, 12547.
      (e) D'Hooghe, M.; Aelterman, W.; De Kimpe, N. Org. Biomol. Chem. 2009, 7, 135.

    3. [3]

      Johnson, J. H.; Phillipson, D. W.; Kahle, A. D. J. Antibiot. 1989, 42, 1184.  doi: 10.7164/antibiotics.42.1184

    4. [4]

      Stratmann, K.; Burgoyne, D. L.; Moore, R. E.; Patterson, G. M. L.; Smith, C. D. J. Org. Chem. 1994, 59, 7219.  doi: 10.1021/jo00103a011

    5. [5]

      Nakatani, S.; Kamata, K.; Sato, M.; Onuki, H.; Hirota, H.; Matsumoto, J.; Ishibashi, M. Tetrahedron Lett. 2005, 46, 267.
      (b) Stratmann, K.; Burgoyne, D. L.; Moore, R. E.; Patterson, G. M. L. J. Org. Chem. 1994, 59, 7219.

    6. [6]

      Molinski, T. F.; Reynolds, K. A.; Morinaka, B. I. J. Nat. Prod. 2012, 75, 425.  doi: 10.1021/np200861n

    7. [7]

      For selected reviews, see:
      (a) Huang, P.-Q. Synlett 2006, 1133.
      (b) Stocker, B. L.; Dangerfield, E. M.; Win-Mason, A. L.; Haslett, G. W.; Timmer, M. S. M. Eur. J. Org. Chem., 2010, 1615.

    8. [8]

      Galeotti, N.; Poncet, J.; Chiche, L.; Jouin, P. J. Org. Chem. 1993, 58, 5370.
      (b) Overhand, M.; Hecht, S. M. J. Org. Chem. 1994, 59, 4721.
      (c) Kanazawa, A.; Gillet, S.; Delair, P.; Greene, A. E. J. Org. Chem. 1998, 63, 4660.
      (d) Bach, T.; Brummerhop, H. Angew. Chem., Int. Ed. 1998, 37, 3400.
      (e) Lee, K.-Y.; Kim, Y.-H.; Oh, C.-Y.; Ham, W.-H. Org. Lett. 2000, 2, 4041.
      (f) Okue, M.; Watanabe, H.; Kitahara, T. Tetrahedron 2001, 57, 4107.
      (g) Huang, P.-Q.; Wu, T.-J.; Ruan, Y.-P. Org. Lett. 2003, 5, 4341.
      (h) Davis, F. A.; Deng, J.-H. Tetrahedron 2004, 60, 5111.
      (i) Wolfe, J. P.; Bertrand, M. B. Org. Lett. 2006, 8, 2353.
      (l) Davis, F. A.; Zhang, J.-Y.; Qiu, H.; Wu, Y.-Z. Org. Lett. 2008, 10, 1433..

    9. [9]

      Bernardi, A.; Micheli, F.; Potenza, D.; Scolastico, C.; Villa, R. Tetrahedron Lett. 1990, 31, 4949.
      (b) Koot, W.-J.; Van Ginkel, R.; Kranenburg, M.; Hiemstra, H.; Louwrier, S.; Moolenaar, M. J.; Speckamp, W. N. Tetrahedron Lett. 1991, 32, 401.

    10. [10]

      Huang, P.-Q.; Wang, S.-L.; Zheng, H.; Fei, X.-S. Tetrahedron Lett. 1997, 38, 271.  doi: 10.1016/S0040-4039(96)02301-5

    11. [11]

      Kim, Y.-A.; Oh, S.-M.; Han, S.-Y. Bull. Korean Chem. 2001, 22, 327.

    12. [12]

      Huang, W.; Ma, J.-Y.; Yuan, M.; Xu, L.-F.; Wei, B.-G. Tet-rahedron 2011, 67, 7829.  doi: 10.1016/j.tet.2011.07.049

    13. [13]

      Liu, R.-C.; Huang, W.; Ma, J.-Y.; Wei, B.-G.; Lin, G.-Q. Tetrahedron Lett. 2009, 50, 4046.
      (b) Huang, W.-F.; Li, Q.-R.; Chao, L.-M.; Lei, X.-S.; Wei, B.-G. Tetrahedron Lett. 2010, 51, 4317.
      (c) Wang, X.-L.; Huang, W.-F.; Lei, X.-S.; Wei, B.-G.; Lin, G.-Q. Tetrahedron 2011, 67, 4919.
      (d) Feng, T.; Si, C.-M.; Liu, R.-C.; Fan, X.; Wei, B.-G. Chin. J. Org. Chem. 2013, 33, 1291(in Chinese).
      (冯涛, 司长梅, 刘如成, 范翔, 魏邦国, 有机化学, 2013, 33, 1291.)
      (e) Zhou, Q.-R.; Wei, X.-Y.; Li, Y.-Q.; Huang, D.-F.; Wei, B.-G. Tetrahedron 2014, 70, 4799.
      (f) Si, C.-M.; Mao, Z.-Y.; Ren, R.-G.; Du, Z.-T.; Wei, B.-G. Tetrahedron 2014, 70, 7936.

    14. [14]

      Si, C.-M.; Huang, W.; Du, Z.-T.; Wei, B.-G.; Lin, G.-Q. Org. Lett. 2014, 16, 4328.
      (b) Si, C.-M.; Mao, Z.-Y.; Dong, H.-Q.; Du, Z.-T.; Wei, B.-G.; Lin, G.-Q. J. Org. Chem. 2015, 80, 5824.
      (c) Si, C.-M.; Mao, Z.-Y.; Liu, Y.-W.; Du, Z.-T.; Wei, B.-G.; Lin, G.-Q. Org. Chem. Front. 2015, 2, 1485.
      (d) Si, C.-M.; Mao, Z.-Y.; Zhou, Z.; Du, Z.-T.; Wei, B.-G. Tetrahedron 2015, 71, 9396.
      (e) Han, P.; Si, C.-M.; Mao, Z.-Y.; Li, H.-T.; Wei, B.-G.; Du, Z.-T. Tetrahedron 2016, 72, 862.

    15. [15]

      Li, Y.; Xu, M.-H. Org. Lett. 2012, 14, 2062.  doi: 10.1021/ol300581n

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    3. [3]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    4. [4]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    5. [5]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    6. [6]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    7. [7]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    8. [8]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    11. [11]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    12. [12]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    13. [13]

      Hongling Liu Yue Xia Guang Xu Yafei Yang Chunhua Qu . Bitter Cold Medicine, Good for Healing. University Chemistry, 2025, 40(3): 328-332. doi: 10.12461/PKU.DXHX202405039

    14. [14]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    15. [15]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    16. [16]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    17. [17]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    18. [18]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    19. [19]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    20. [20]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

Metrics
  • PDF Downloads(0)
  • Abstract views(920)
  • HTML views(123)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return