Citation: Shi Yanjun, Ni Zhenjie, Zhen Yonggang, Dong Huanli, Hu Wenping. Utilization of C—H Bond Activation in Synthesis of Organic Semiconductors[J]. Chinese Journal of Organic Chemistry, ;2016, 36(8): 1741-1764. doi: 10.6023/cjoc201604009 shu

Utilization of C—H Bond Activation in Synthesis of Organic Semiconductors

  • Corresponding author: Zhen Yonggang, zhenyg@iccas.ac.cn Hu Wenping, huwp@iccas.ac.cn
  • Received Date: 5 April 2016
    Revised Date: 19 May 2016

    Fund Project: the Ministry of Science and Technology of China Nos. 2013CB933504,2014CB643600Project supported by the National Natural Science Foundation of China Nos. 91222203,91233205,51303185the Strategic Priority Research Program of Chinese Academy of Sciences No. XDB12000000

Figures(8)

  • The development of C—H bond activiation and the typical reaction mechanism is introduced in the first part. The progress of organic small molecule and polymer semiconductors prepared by C—H activation is reviewed. The applicability of C—H activation and the performance of organic semiconductors achieved by C—H activation are discussed in detail.
  • 加载中
    1. [1]

    2. [2]

      Babudri, F.; Cicco, S. R.; Farinola, G. M.; Naso, F.; Bolognesi, A.; Porzio, W. Macromol. Rapid Commun. 1996, 17, 905.(b) Bao, Z. N.; Chan, W. K.; Yu, L. P. J. Am. Chem. Soc. 1995, 117, 12426. 

    3. [3]

      Kowalski, S.; Allard, S.; Zilberberg, K.; Riedl, T.; Scherf, U. Prog. Polym. Sci. 2013, 38, 1805.

    4. [4]

      Osedach, T. P.; Andrew, T. L.; Bulović, V. Energy Environ. Sci. 2013, 6, 711.

    5. [5]

      Gutekunst, W. R.; Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976. 

    6. [6]

      Hofmann, A. W. Ber. 1883, 16, 558. 

    7. [7]

      Murahashi, S. J. Am. Chem. Soc. 1955, 77, 6403.

    8. [8]

      Ohta, A.; Akita, Y.; Ohkuwa, T.; Chiba, M.; Fukunaga, R.; Miyafuji, A.; Nakata, T.; Tani, N.; Aoyagi, Y. Heterocycles 1982, 31, 1951.(b) Marc, S.; Julien, P.; Emmanuelle, S.; Lemaire, M. Tetrahedron Lett. 1999, 40, 5873.

    9. [9]

      Mercier, L. G.; Leclerc, M. Acc. Chem. Res. 2013, 46, 1597. 

    10. [10]

      Wang, X. C.; Wang, K.; Wang, M. F. Polym. Chem. 2015, 6, 1846. 

    11. [11]

      Matsidik, R.; Martin, J.; Schmidt, S.; Obermayer, J.; Lombeck, F.; Nubling, F.; Komber, H.; Fazzi, D.; Sommer, M. J. Org. Chem. 2015, 80, 980. 

    12. [12]

      Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172.

    13. [13]

      He, C.-Y.; Fan, S.; Zhang, X. J. Am. Chem. Soc. 2010, 132,12850. 

    14. [14]

      Yoon, M. H.; Facchetti, A.; Stern, C. E.; Marks. T. J. J. Am. Chem. Soc. 2006, 128, 5792. 

    15. [15]

      Zhang, J.; Chen, W.; Rojas, A. J.; Jucov, E. V.; Timofeeva, T. V.; Parker, T. C.; Barlow, S.; Marder, S. R. J. Am. Chem. Soc. 2013, 135, 16376. 

    16. [16]

      Pham, M. V.; Cramer, N. Angew. Chem., Int. Ed. 2014, 53, 3484. 

    17. [17]

      Delord, J. W.; Nimphius, C.; Wang, H.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 13001. 

    18. [18]

      Review on the synthesis and reactions of dibenzo- [a,e]pentalenes:(a) Saito, M. Symmetry 2010, 2, 950.(b) Brand, K. Dtsch. Ber. Chem. Ges. 1912, 45, 3071.(c) Ballester, M.; CastaÇer, J.; Riera, J.; Armet, O. J. Org. Chem. 1986, 51, 1100.(d) Zhang, H.; Karasawa, T.; Yamada, H.; Wakamiya, A.; Yamaguchi, S. Org. Lett. 2009, 11, 3076.(e) Levi, Z. U.; Tilley, T. D. J. Am. Chem. Soc. 2009, 131, 2796.(f) Kawase, T.; Konishi, A.; Hirao, Y.; Matsumoto, K.; Kurata, H.; Kubo, T. Chem. Eur. J. 2009, 15, 2653.(g) Xu, F.; Peng, L.; Orita, A.; Otera, J. Org. Lett. 2012, 14, 3970.(h) Jeffrey, J. L.; Sarpong, R. Tetrahedron Lett. 2009, 50, 1969.(i) Hashmi, A. S. K.; Wieteck, M.; Braun, I.; Nçsel, P.; Jongbloed, L.; Rudolph, M.; Rominger, F. Adv. Synth. Catal. 2012, 354, 555.

    19. [19]

      Maekawa, T.; Segawa, Y.; Itami, K. Chem. Sci. 2013, 4, 2369.

    20. [20]

      Zhao, J.; Oniwa, K.; Asao, N.; Yamamoto, Y.; Jin, T. J. Am. Chem. Soc. 2013, 135, 10222. 

    21. [21]

      Kawamata, Y.; Tokuji, S.; Yorimitsu, H.; Osuka, A. Angew. Chem., Int. Ed. 2011, 50, 8867. 

    22. [22]

      Lafrance, M.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 16496.(b) Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 10848.(c) Sun, H. Y.; Gorelsky, S. I.; Stuart, D. R.; Campeau, L. C.; Fagnou, K. J. Org. Chem. 2010, 75, 8180.(d) Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Org. Chem. 2012, 77, 658. 

    23. [23]

      Mitamura, Y.; Yorimitsu, H.; Oshima, K.; Osuka, A. Chem. Sci. 2011, 2, 2017.

    24. [24]

      Qian, H. L.; Wang, Z. H.; Y, W.; Zhu, D. B. J. Am. Chem. Soc. 2007, 129, 10664. 

    25. [25]

      Lv, A.; Puniredd, S. R.; Zhang, J.; Li, Z.; Zhu, H.; Jiang, W.; Dong, H.; He, Y.; Jiang, L.; Li, Y.; Pisula, W.; Meng, Q.; Hu, W.; Wang, Z. Adv. Mater. 2012, 24, 2626.

    26. [26]

      Inganas, O.; Zhang, F.; Andersson, M. R. Acc. Chem. Res. 2009, 42, 1731. 

    27. [27]

      Zhen, Y. G.; Wang, C. R.; Wang, Z. H. Chem. Commun. 2010, 46, 1926. 

    28. [28]

      Zhang, J.; Kang, D.-Y.; Barlow, S.; Marder, S. R. J. Mater. Chem. 2012, 22, 21392. 

    29. [29]

      Liu, S.-Y.; Shi, M.-M.; Huang, J.-C.; Jin, Z.-N.; Hu, X.-L.; Pan, J.-Y.; Li, H.-Y.; Jen, A. K. Y.; Chen, H.-Z. J. Mater. Chem. A 2013, 1, 2795. 

    30. [30]

      Wang, Q. F.; Takita, R.; Kikuzaki, Y.; Ozawa, F. J. Am. Chem. Soc. 2010, 132, 11420. 

    31. [31]

      Rudenko, A. E.; Wiley, C. A.; Stone, S. M.; Tannaci, J. F.; Thompson, B. C. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 3691. 

    32. [32]

      Lu, W.; Kuwabara, J.; Kanbara, T. Macromolecules 2011, 44, 1252.

    33. [33]

      Fujinami, Y.; Kuwabara, J.; Lu, W.; Hayashi, H.; Kanbara, T. ACS Macro Lett. 2012, 1, 67.

    34. [34]

      Choi, S. J.; Kuwabara, J.; Kanbara, T. ACS Sustainable Chem. Eng. 2013, 1, 878.

    35. [35]

      Sharma, A.; Vacchani, D.; Eycken, V. Chem.-Eur. J. 2013, 19, 1158. 

    36. [36]

      Poduval, M. K.; Burrezo, P. M.; Casado, J.; López Navarrete, T. L.; Ortiz, R. P.; Kim, T. H. Macromolecules 2013, 46, 9220. 

    37. [37]

      Kuwabara, J.; Nohara, Y.; Choi, S. J.; Fujinami, Y.; Lu,W.; Yoshimura, K.; Oguma, J.; Suenobu, K.; Kanbara, T. Polym. Chem. 2013, 4, 947.

    38. [38]

      Nakabayashi, K.; Mori, H. Chem. Lett. 2013, 42, 717.

    39. [39]

      Morin, P. O.; Bura, T.; Sun, B.; Gorelsky, S. I.; Li, Y.; Leclerc, M. ACS Macro Lett. 2014, 4, 21.

    40. [40]

      Lombeck, F.; Komber, H.; Gorelsky, S. I.; Sommer, M. ACS Macro Lett. 2014, 3, 819. 

    41. [41]

      Nohara, Y.; Kuwabara, J.; Yasuda, T.; Han, L.; Kanbara, T. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 1401. 

    42. [42]

      Luzio, A.; Fazzi, D.; Nübling, F.; Matsidik, R.; Straub, A.; Komber, H.; Giussani, E.; Watkins, S. E.; Barbatti, M.; Thiel, W.; Gann, E.; Thomsen, L.; McNeill, C. R.; Caironi, M.; Sommer, M. Chem. Mater. 2014, 26, 6233.

    43. [43]

      Rudenko, A. E.; Khlyabich, P. P.; Thompson, B. C. ACS Macro Lett. 2014, 3, 387. 

    44. [44]

      Wang, X.; Wang, M. Polym. Chem. 2014, 5, 5784.

    45. [45]

      Elsawy, W.; Kang, H.; Yu, K.; Elbarbary, A.; Lee, K.; Lee, J.-S. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 2926.

    46. [46]

      Sun, M. M.; Wang, W.; Liang, L. Y.; Yan, S. H.; Zhou, M. L.; Ling, Q. D. Chin. J. Polym. Sci. 2015, 33, 783. 

    47. [47]

      Kowalski, S.; Allard, S.; Scherf, U. Macromol. Rapid Commun. 2015, 36, 1061. 

    48. [48]

      Homyak, P.; Liu, Y.; Liu, F.; Russel, T. P.; Coughlin, E. B. Macromolecules 2015, 48, 6978. 

    49. [49]

      Matsidik, R.; Komber, H.; Luzio, A.; Caironi, M.; Sommer, M. J. Am. Chem. Soc. 2015, 137, 6705. 

    50. [50]

      Shao, J.; Wang, G.; Wang, K.; Yang, C.; Wang, M. Polym. Chem. 2015, 6, 6836.

    51. [51]

      Wang, K.; Wang, G.; Wang, M. Macromol. Rapid Commun. 2015, 36, 2162. 

    52. [52]

      Broll, S.; Nübling, F.; Luzio, A.; Lentzas, D.; Komber, H.; Caironi, M.; Sommer, M. Macromolecules 2015, 48, 7481.

    53. [53]

      Pouliot, J. R.; Sun, B.; Leduc, M.; Najari, A.; Li, Y.; Leclerc, M. Polym. Chem. 2015, 6, 278.

    54. [54]

      Gao, Y.; Zhang, X.; Tian, H.; Zhang, J.; Yan, D.; Geng, Y.; Wang, F. Adv. Mater. 2015, 27, 6753.

    55. [55]

      Nakanishi, T.; Shirai, Y.; Han, L. J. Mater. Chem. A 2015, 3, 4229. 

    56. [56]

      Zou, Y.; Najari, A.; Berrouard, S.; Beaupr, S.; Aich, B. R.; Tao, Y.; Leclerc, M. J. Am. Chem. Soc. 2010, 132, 7595. 

    57. [57]

      Piliego, C.; Holcome, T. W.; Douglas, J. D.; Woo, C. H.; Beaujuge, P. M.; Fréchet, J. M. J. J. Am. Chem. Soc. 2010, 132, 7595. 

    58. [58]

      Su, M. S.; Kuo, C. Y.; Yuan, M. C.; Jeng, U. S.; Su, C. J.; Wei, K. H. Adv. Mater. 2011, 23, 3315. 

    59. [59]

      Gendron, D.; Leclerc, M. Energ. Environ. Sci. 2011, 4, 1225.

    60. [60]

      Chu, T. Y.; Lu, J.; Beaupre, S.; Zhang, Y.; Pouliot, J. R.; Wakim, S.; Zhou, J.; Leclerc, M.; Li, Z.; Ding, J.; Tao, Y. J. Am. Chem. Soc. 2011, 133, 4250. 

    61. [61]

      Guo, X.; Ortiz, R. P.; Zheng, Y.; Hu, Y.; Noh, Y. Y.; Baeg, K. J.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2011, 133, 1405. 

    62. [62]

      Allard, N.; Najari, A.; Pouliot, J.-R.; Pron, A.; Grenier, F.; Leclerc, M. Polym. Chem. 2012, 3, 2875.

    63. [63]

      Berrouard, P.; Dufresne, S.; Pron, A.; Veilleux, J.; Leclerc, M. J. Org. Chem. 2012, 77, 8167. 

    64. [64]

      Berrouard, P.; Najari, A.; Pron, A.; Gendron, D.; Morin, P. O.; Pouliot, J. R.; Veilleux, J.; Leclerc, M. Angew. Chem., Int. Ed. 2012, 51, 2068. 

    65. [65]

      Grenier, F.; Berrouard, P.; Pouliot, J.-R.; Tseng, H.-R.; Heeger, A. J.; Leclerc, M. Polym. Chem. 2013, 4, 1836.

    66. [66]

      Pouliot, J. R.; Mercier, L. G.; Caron, S.; Leclerc, M. Macromol. Chem. Phys. 2013, 214, 453.

    67. [67]

      Wakioka, M.; Ichihara, N.; Kitano, Y.; Ozawa, F. Macromolecules 2014, 47, 626.

    68. [68]

      Iizuka, E.; Wakioka, M.; Ozawa, F. Macromolecules 2015, 48, 2989.

    69. [69]

      Lu, W.; Kuwabara, J.; Iijima, T.; Higashimura, H.; Hayashi, H.; Kanbara, T. Macromolecules 2012, 45, 4128.

    70. [70]

      Wakioka, M.; Kitano, Y.; Ozawa, F. Macromolecule 2013, 46, 370.

    71. [71]

      Lu, W.; Kuwabara, J.; Kanbara, T. Polym. Chem. 2012, 3, 3217.

    72. [72]

      Kuramochi, M.; Kuwabara, J.; Lu, W.; Kanbara, T. Macromolecules 2014, 47, 7378.

    73. [73]

      Lu, W.; Kuwabara, J.; Kuramochi, M.; Kanbara, T. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 1396. 

  • 加载中
    1. [1]

      Xiaomin Kang Chuanbao Jiao . Application of Metal-Organic Frameworks in CO2 Catalytic Conversion: Promoting “Double Carbon” Actions for a Beautiful China. University Chemistry, 2026, 41(2): 208-217. doi: 10.12461/PKU.DXHX202503011

    2. [2]

      Xiangyu CHENZhenzhen MIAOLigang XUGuangbao WUZhuang LIUWenzhen LÜRunfeng CHEN . Research progress on low-dimensional organic-inorganic hybrid metal halide optoelectronic materials. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2201-2217. doi: 10.11862/CJIC.20250056

    3. [3]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    4. [4]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    5. [5]

      Xiaogang YANGXinya ZHANGJing LIHuilin WANGMin LIXiaotian WEIXinci WULufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167

    6. [6]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    7. [7]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    8. [8]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    9. [9]

      Yachao HUANGChuanwang ZENGGuiyong LIUJinming ZENGChao LIUXiaopeng QI . Oxygen vacancies and phosphorus doping enhanced metal-organic framework derived nitrogen-doped carbon-coated Co3O4 bifunctional electrocatalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2251-2260. doi: 10.11862/CJIC.20250133

    10. [10]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    11. [11]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    12. [12]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    13. [13]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    14. [14]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    15. [15]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    16. [16]

      Guanghui Wang Chen Qian Zhiyong Ma . Preparation and Characterization of 7H-Benzo[C]Carbazole Based Ultra-Long Organic Room Temperature Phosphorescence Material. University Chemistry, 2025, 40(11): 289-299. doi: 10.12461/PKU.DXHX202412062

    17. [17]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    18. [18]

      Fengxiao Wang Zhiwei Miao Yaofeng Yuan . 有机磷化学与化学教学. University Chemistry, 2025, 40(8): 158-168. doi: 10.12461/PKU.DXHX202410077

    19. [19]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    20. [20]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

Metrics
  • PDF Downloads(0)
  • Abstract views(2757)
  • HTML views(572)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return