Citation: Su Biyun, Jia Peiyu, Wang Yanzhao, Li Yaning, Huang He, Li Qianding. Copolymerization of Ethylene/Polar Monomer Catalyzed by Phosphinoarenesulfonate (PO) Metal Catalysts and the Catalytic Mechanism[J]. Chinese Journal of Organic Chemistry, ;2016, 36(10): 2344-2352. doi: 10.6023/cjoc201603048 shu

Copolymerization of Ethylene/Polar Monomer Catalyzed by Phosphinoarenesulfonate (PO) Metal Catalysts and the Catalytic Mechanism

  • Corresponding author: Su Biyun, subiyun@xsyu.edu.cn.
  • Received Date: 30 March 2016
    Revised Date: 11 May 2016

    Fund Project: ProjectProject of Shaanxi Education Department No.12JK0620and the Science and Technology Research Program of Shaanxi Province No.2013 KJXX-33

Figures(2)

  • The metal catalysts based on phosphinoarenesulfonate (PO) ligand display interesting olefin polymerization prop-erties, which not only polymerize ethylene to linear polyethylene, but also copolymerize ethylene with polar vinyl monomers or CO to functional linear copolymers. The structural features of PO ligand and the novel polymerization reactions initiated by (PO)Pd(Ⅱ) complexes are assumed. Then the application of (PO)Ni(Ⅱ) catalysts in the copolymerization of ethylene with polar monomers, as well as the rare catalytic properties of Pd(Ⅱ), Ru(Ⅳ) catalysts based on phosphine-bis(arenesulfonate) (OPO) ligands are reviewed. At last, the influence of PO ligand structural features such as symmetry, flexibility, steric effect in axial direction, as well as the pure electronic effect on the insertion and polymerization reactivity of PO metal catalyst are explored, at the same time, the catalytic reaction mechanism is also studied.
  • 加载中
    1. [1]

       

    2. [2]

      Nakamura, A.; Ito, S, Nozaki, K. Chem. Rev. 2009, 109, 5215.

    3. [3]

      Berkefeld, A.; Mecking, S. Angew. Chem., Int. Ed. 2008, 47, 2538. 

    4. [4]

      Ito, S.; Nozaki, K. Chem. Rec. 2010, 10, 315.

    5. [5]

      Chung, T. C. Functionalization of Polyolefins, Academic Press, USA, 2002, p. 69.

    6. [6]

      Osakada, K. Organometallic Reactions and Polymerization, Lecture Notes in Chemistry, Springer-Verlag, Berlin Heidelberg, 2014.

    7. [7]

      Desurmont, G.; Tokimitsu, T.; Yasuda, H. Macromolecules 2000, 33(21), 7679.

    8. [8]

      Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc. 1995, 117, 6414. 

    9. [9]

      Contrella, N. D.; Sampson, J. R.; Jordan, R. F. Organometallics 2014, 33, 3546. 

    10. [10]

      Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. Rev. 2000, 100, 1169.

    11. [11]

      Mecking, S.; Johnson, L. K.; Wang, L.; Brookhart, M. J. Am. Chem. Soc. 1998, 120, 888. 

    12. [12]

      Hou, Z. M.; Luo, Y. J.; Li, X. F. J. Organomet. Chem. 2006, 691(14), 3114. 

    13. [13]

      Yamamoto, A.; Nishiura, M.; Oyamada, J.; Koshino, H.; Hou, Z. M. Macromolecules 2016, 49(7), 2458. 

    14. [14]

      Kang, X. H.; Zhou, G. L.; Wang, X. B.; Qu, J. P.; Hou, Z. M.; Luo, Y. Organometallics 2016, 35(6), 913. 

    15. [15]

      Soller, B. S.; Sun, Q.; Salzinger, S.; Jandl, C.; Pöthig, A.; Rieger, B. Macromolecules 2016, 49(5), 1582.

    16. [16]

      Wang, Z. C.; Liu, D. T.; Cui, D. M. Macromolecules 2016, 49(3), 781. 

    17. [17]

      Kuhn, P.; Semeril, D.; Matt, D.; Chetcuti, M. J.; Lutz, P. Dalton. Trans. 2007, 515.

    18. [18]

      Murray, R. E.; Charleston, W. V. US 4689437, 1987[Chem. Abstr. 1988, 108, 6646].

    19. [19]

      Murray, R. E.; Wenzel, T. T. Am. Chem. Soc. Div. Pet. Chem. 1989, 34, 599.

    20. [20]

      Drent, E.; Van, D. R.; Van, G. R.; Van, O. B.; Pugh, R. I. Chem. Commun. 2002, 744.

    21. [21]

      Drent, E.; Van, D. R.; Van, G. R.; Van, O. B.; Pugh, R. I. Chem. Commun. 2002, 964.

    22. [22]

      Hearley, A. K.; Nowack, R. J.; Rieger, B. Organometallics 2005, 24, 2755. 

    23. [23]

      Kochi, T.; Yoshimura, K.; Nozaki, K. Dalton. Trans. 2006, 25.

    24. [24]

      Kryuchkov, V. A.; Daigle, J. C.; Skupov, K. M.; Winnik, F. M.; Claverie,J. P. J. Am. Chem. Soc. 2010, 132, 15573. 

    25. [25]

      Friedberger, T.; Wucher, P.; Mecking, S. J. Am. Chem. Soc. 2012, 134, 1010. 

    26. [26]

      Runzi, T.; Frohlich, D.; Mecking, S. J. Am. Chem. Soc. 2014, 132, 17690.

    27. [27]

      Daigle, J. C.; Piche, L. C.; Claverie, J. P. Macromolecules 2011, 44, 1760. 

    28. [28]

      Shen, Z. L.; Jordan, R. F. Macromolecules 2010, 43, 8706. 

    29. [29]

      Luo, S. J.; Vela, J.; Lief, G. R.; Jordan, R. F. J. Am. Chem. Soc. 2007, 129, 8946. 

    30. [30]

      Skupov, K. M.; Piche, L.; Claverie, J. P. Macromolecules 2008, 41, 2309. 

    31. [31]

      Bouilhac, C.; Runzi, T.; Mecking, S. Macromolecules 2010, 43, 3589.

    32. [32]

      Nakamura, A.; Anselment, T. M. J.; Claverie. J. P.; Goodall, B.; Jordan, R. F.; Mecking, S.; Rieger, B.; Sen, A.; Leeuwen, P. W. N. M.; Nozaki, K. Acc. Chem. Res. 2013, 46(7), 1438. 

    33. [33]

      Guironnet, D.; Roesle, P.; Rünzi, T.; Göttker-Schnetmann, I.; Mecking, S. J. Am. Chem. Soc. 2009, 131, 422. 

    34. [34]

      Berkefeld, A.; Guironnet, D.; Neuwald, B.; Roesle, P.; Rünzi, T.; Wucher, P.; Göttker-Schnetmann, I.; Dürr, C.; Mecking, S. Polym. Prepr. 2010, 51(2), 367.

    35. [35]

      Matthew, P. C.; Richard, F. J. Angew. Chem., Int. Ed. 2011, 50, 3744. 

    36. [36]

      Albietz, P. J.; Cleary, B. P.; Paw, W.; Eisenberg, R. Inorg. Chem. 2002, 41, 2095.

    37. [37]

      Casares, J. A.; Espinet, P. Inorg. Chem. 1997, 36, 5428.

    38. [38]

      Carrow, B. P.; Nozaki, K. J. Am. Chem. Soc. 2012, 134, 8820.

    39. [39]

      Wilkes, C. E.; Daniels, C. A.; Summers, J. W. PVC Handbook, Carl Hanser Verlag, Munich, 2005.

    40. [40]

      Boone, H. W.; Athey, P. S.; Mullins, M. J.; Philipp, D.; Muller, R.; Goddard, W. A. J. Am. Chem. Soc. 2002, 124, 8790. 

    41. [41]

      Philipp, D. M.; Muller, R. P.; Goddard, W. A.; Storer, J.; McAdon, M.; Mullins, M. J. Am. Chem. Soc. 2002, 124, 10198. 

    42. [42]

      Foley, S. R.; Stockland, R. A.; Shen, H. J.; Jordan, R. F. J. Am. Chem. Soc. 2003, 125, 4350. 

    43. [43]

      Nozaki, K.; Carrow, B. P. J. Am. Chem. Soc. 2012, 134, 8802. 

    44. [44]

      Leicht, H.; Göttker-Schnetmann, I.; Mecking, S. Angew. Chem., Int. Ed. 2013, 52, 3963. 

    45. [45]

      Zhang, D.; Guironnet, D.; Göttker-Schnetmann, I.; Mecking, S. Organometallics 2009, 28, 4072.

    46. [46]

      Perrotin, P.; McCahill, J. S. J.; Wu, G.; Scott, L. S. Chem. Commun. 2011, 47, 6948. 

    47. [47]

      Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4685. 

    48. [48]

      Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338. 

    49. [49]

      Zhou, X. Y.; Bontemps, S.; Jordan, R. F. Organometallics 2008, 27(19), 4822.

    50. [50]

      Nowack, J. R.; Hearley, K. A.; Rieger, B. Z. Anorg. Allg. Chem. 2005, 631, 2775. 

    51. [51]

      Guironnet, D.; Runzi, T.; Göttker-Schnetmann, I.; Mecking, S. Med. Chem. Commun. 2008, 4965.

    52. [52]

      Contrella, N. D.; Sampson, J. R.; Jordan, R. F. Organometallics 2014, 33, 3546. 

    53. [53]

      Shen, Z,; Jordan, R. F. J. Am. Chem. Soc. 2010, 132, 52. 

    54. [54]

      Mecking, S.; Johnson, L. K.; Wang, L.; Brookhart, M. J. Am. Chem. Soc. 1998, 120, 888. 

    55. [55]

      Kuwabara, J.; Tekeuchi, D.; Osakada, K. Chem. Commun. 2006, 3815.

    56. [56]

      Rodriguez, B. A.; Delferro, M.; Marks, T. J. J. Am. Chem. Soc. 2009, 131, 5902. 

    57. [57]

      Shen, Z. L.; Jordan, R. F. Macromolecules 2010, 43, 8706. 

    58. [58]

      Carrow, B. P.; Nozaki, K. Macromolecules 2014, 47(8), 2541. 

    59. [59]

      Friedberger, T.; Ziller, J. W.; Guan, Z. B. Organometallics 2014, 33, 1913. 

    60. [60]

      Neuwald, B.; Falivene, L.; Caporaso, L.; Cavallo, L.; Mecking, S. Chem. Eur. J. 2013, 19, 17773. 

    61. [61]

      Neuwald, B.; Caporaso, L.; Cavallo, L.; Mecking, S. J. Am. Chem. Soc. 2013, 135, 1026 

    62. [62]

      Anselment, T. M. J.; Wichmann, C.; Anderson, C. E.; Herdtweck, E.; Rieger, B. Organometallics 2011, 30, 6602.

    63. [63]

      Wucher, P.; Goldbach, V.; Mecking, S. Organometallics 2013, 32, 4516.

    64. [64]

      Rünzi, T.; Tritschler, U.; Roesle, P.; Göttker-Schnetmann, I.; Möller, H. M.; Caporaso, L.; Poater, A.; Cavallo, L.; Mecking, S. Organometallics 2012, 31, 8388.

    65. [65]

      Guo, L. H.; Dai, S. Y.; Sui, X. L.; Chen, C. L. ACS Catal. 2016, 6(1), 428. 

    66. [66]

      Ito, S.; Wang, W. H.; Nozaki, K. Polym. J. 2015, 47, 474.

    67. [67]

      Jian, Z. B.; Falivene, L.; Wucher, P.; Roesle, P.; Caporaso, L.; Cavallo, L.; Inigo G., S.; Mecking, S. J. Chem. Eur. 2015, 21, 2062. 

    68. [68]

      Labed, A.; Jiang, F.; Labed, I.; Lator, A.; Peters, M.; Achard, M.; Kabouche, A.; Kabouche, Z.; Sharma, G. V. M.; Bruneau, C. ChemCatChem 2015, 7, 1090. 

    69. [69]

      Li, M. L.; Song; H. B.; Wang, B. Q. Organometallics 2015, 34(10), 1969. 

    70. [70]

      Nakano, R.; Nozaki, K. J. Am. Chem. Soc. 2015, 137(34), 10934. 

    71. [71]

      Schuster, N.; Rünzi, T.; Mecking, S. Macromolecules 2016, 49(4), 1172.

  • 加载中
    1. [1]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    2. [2]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    3. [3]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    4. [4]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    5. [5]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    6. [6]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    7. [7]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    8. [8]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    9. [9]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    11. [11]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    12. [12]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    15. [15]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    17. [17]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

Metrics
  • PDF Downloads(0)
  • Abstract views(1978)
  • HTML views(205)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return